
POLITECNICO DI TORINO

Doctoral School

Department of Control and Computer Engineering – XXVII cycle

PhD Thesis

Dependable System Design for
Reconfigurable Safety-Critical

Applications

Anees Ullah

Tutor Coordinator of the PhD program
Prof. Luca Sterpone Prof. Matteo Sonza Reorda

February 2015





Dedicated to the
prayers of my
mother, the dream
of my father who
could not live to see
this day, to the love
of my wife and to
my sweet children.



Preface

Scaling of transistor’s channel length is entering the realm of atomic and molecular
geometries making possible the design of powerful miniature sized computing device
and enabling their omnipresence in every aspect of human life including safety-
critical applications, for example, automotive, space and avionics and bio-medicine.
However, these scaled nanoelectronic systems are increasingly vulnerable to tran-
sients and permanent faults posing severe threat to life and expensive equipment.
Therefore, safety-critical applications should consider dependability from design,
implementation, layout, fabrication to in-field operations. The evaluation of de-
pendability of such systems is equally important.

State-of-the-art SRAM-based FPGAs are interesting devices because they are
not only the early adopters of latest technology nodes making them vulnerable to
all sorts of nanoelectronic faults but their reconfiguration properties have potential
counter-measure applications in dependable system design. This dissertation is fo-
cused on the usage of reconfiguration for improving and evaluating the dependability
of nanoelectronic systems. The main research problem pursued in this work is the
effective mitigation of soft errors like Single Event Upsets (SEUs) and Multiple Bit
Upsets (MBUs) in FPGA’s configuration memory, optimizing the reconfiguration
times for fault injection and fault removal and emulation of permanent faults.

To address these problems this work proposes solutions based on applying re-
dundancy and reconfiguration at different levels of granularity leveraging the ba-
sic building blocks of FPGA’s architecture and reconfiguration capabilities in an
unconventional manner usually not supported by standard tools. The solutions
presented effectively mitigate MBUs by using techniques of fine-grain and coarse-
grain redundancy and reliability-oriented placement. Recovery times are optimized
with fine-grain error detection, error localization and local repairing. The usage of
carry-chain based error detectors promises very fast error detection times in orders
of nanoseconds and has extremely low-area overhead. The programmable nature
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of LUTs is exploited for permanent stuck-at fault emulation of custom ICs using
controlled LUT-mapping resulting in significant speed up against traditional fault
simulation times.
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Chapter 1

Toward Reconfigurable Computing
Paradigm

The ubiquity of electronic systems in todays world owes their existence to the aggres-
sive technology scaling of transistor channel lengths. This miniaturization towards
the atomic and molecular dimensions has produced computationally powerful and
high performance systems enabling the integration of computing systems in every
imaginable aspect of human life. This astounding progress is the result of daunting
and complex electronic systems design and implementation efforts by semiconduc-
tors chip manufacturing industry in the past decades. Since, the famous prediction
by Intel’s co-founder Gordon Moore, that number of transistor on chip will double
every two years [1], the Integrated Circuit (IC) manufacturers used it as a driving
goal for survival. This required great efforts in the design, implementation, layout,
fabrication and verification efforts and technologies. Todays VLSI chips, by no ex-
aggeration, are the most complex systems that humans have created.

The companies that were involved in chip manufacturing business in the early
days of computing revolution had to design as well as fabricate them. These inte-
grated device manufacturing (IDMs) companies required a huge capital to maintain
its human resource as well as building and material expenditure. Furthermore, the
technological scaling process which was vital for the survival in the chip industry
meant that these IDMs would have to spend a good part of what they already earned
in the previous two years to stay up-to-date. This perpetual cycle made it very hard
for new companies to join the race and demanded a whole new model to cope with
this challenge. In early 1980s, the introduction of fabless chip model by the pioneers
of FPGAs helped to disintegrate the IDMs business model and accelerated the pace
of chip manufacturing [2].
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1 – Toward Reconfigurable Computing Paradigm

The reason that FPGAs established the fabless chip model lies in the regular and
homogenous architecture. It consists of computing nodes in form of Configurable
Logic Blocks (CLBs) connected together by flexible Interconnect architecture. These
logic and routing blocks are repeated to build up an array supplemented by Input
and Output blocks (IOBs) to connect to the outside world. For example, the first
FPGA chip, XC2064 utilized 64 CLBs and 58 IOBs [2] and was realized in 2.5 µm
CMOS process. It required 85,000 transistors and was already larger than most mi-
croprocessors produced at that time. The properties of regularity and homogeneity
to a great extent helped the FPGA manufacturers to become the very early adopters
of the latest technology nodes and helped with the market penetration over the past
three decades. Today FPGA chips are devices that are produced with state-of-the-
art technology nodes, for example, recently Xilinx Inc. has produced FPGAs with
16nm FinFET [3] while Alteras startix-10 line uses Intel 14 nm tri-gate technolo-
gies [4].

Another reason that FPGAs are early adopters of new technology nodes is their
usage of SRAM cell technology [5]. SRAM based FPGAs do not require changes
in fabrication process, therefore, they are amenable to the usage of new technol-
ogy nodes. More importantly, the reliance on SRAM technology brings the re-
configurability which means that the same chip can be used many times for im-
plementing different functionalities or changes to the existing functionality. This
property made SRAM based FPGA attractive for rapid prototyping and was fre-
quently used by custom IC manufacturers for this purpose. Reconfigurability and
amenability of SRAM based FPGAs to dimensional scaling were the prime drivers
for deciding the victory between two competing FPGA programming technologies,
the anti-fuse and SRAMs in the early days. Today large market share in the indus-
try is held by the SRAM based FPGAs.

On the other hand, SRAM cells are inherently sensitive to radiation effects in
form of Soft Errors [6] [7]. This translates to faults in the FPGAs configuration
memory which is responsible for the functionality of the circuits mapped on FP-
GAs [8]. Soft errors can flip the memory content of an SRAM cell which may be
responsible for holding the configuration for a routing connection, a combinational
logic function or an instantaneous flip-flop value [9]. Therefore, soft errors can in-
duce transient or permanent faults in the FPGA configuration memory. The effects
of these radiation on circuits based on nano-scale geometries can be catastrophic
for the functionality of overall system and can result in huge losses in terms of
life and capital. Although, FPGAs are more susceptible to radiation effects due to
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dependence on SRAM technology, nonetheless, ASICs and microprocessors are no
exception, therefore, proper analysis of radiation effects and mitigation techniques
are vital for applications where radiation effects post a threat to safety [10].

Electronic systems utilized in applications where safety and reliability are a ma-
jor concern are often called safety-critical systems. A failure in such systems means
a loss in life, property and/or damage to environment, for example, space, avion-
ics, automotive applications, biomedical applications, weapons and nuclear power
plants [11]. The design and implementation of electron systems for safety-critical ap-
plications needs to consider dependability-oriented optimization goals and properties
as outlined in the famous paper [12]. Although, dependability concepts encompasses
a large number of attributes [12], the attributes considered in this dissertation are
mainly related to reliability and availability. The reliability of a system is the abil-
ity to continues the correct services while the availability means the readiness to
offer the correct service. The dependability threats that are considered in this work
are soft errors produced by radiation effects and permanent faults produced during
VLSI chip fabrication process.

These dependability threats and the corresponding mitigation techniques will be
considered in this dissertation as applied to state-of-the-art FPGAs. The attrac-
tive properties of short time to market, huge logic densities, high performance and
particularly reconfigurability made FPGAs a designers choice even in saftey-critical
applications. Nowadays, SRAM-based FPGAs with proper systems design and miti-
gation techniques are used in a variety of safety-critical applications [13] [14] [15] [16].
Therefore, design techniques, tools and methodologies for dependability-oriented
applications of FPGA based systems is an active research topic these days. This
dissertation focuses on harnessing the powers of reconfiguration of modern SRAM
based FPGAs for improving and evaluating the dependability of nano-electronic
systems.

The reconfiguration capabilities of modern SRAM based FPGAs can enable sys-
tems to recover from the radiation induced upsets in the configuration memory. The
fascinating technology of partial reconfiguration makes it possible to selectively re-
configure a portion of the design mapped on the FPGA while the rest of system is
still running in real time [17]. This enabling technology primarily introduced for
improving the area, power consumption and re-usability is very handy for recovery
from faults. Combing spatial redundancy based techniques for concurrent error de-
tection and correction using partial reconfiguration ensure reliable operation of the
systems respecting real-time deadlines. Traditionally, vendor tools do not optimize
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1 – Toward Reconfigurable Computing Paradigm

designs for reliability, therefore, design methodologies and tools are needed to effec-
tively utilize the FPGA fabric and fully exploit partial reconfiguration.

With the dimensional scaling approaching the atomic and molecular dimensions,
the physical barriers for etching circuits in silicon are also becoming more and more
prominent. The photo-lithography driven chip fabrication process is suffering from
manufacturing defects in form of stuck-at faults, stuck-open faults and bridging
faults to name a few. To quantify this problem, yield of a fabrication process is an
important metric to consider which is determined by fault simulation process. Fault
simulation process injects faults in Circuit under Test (CUT) and applies the inputs
to analyze the effects on the circuit’s output. This process can be accomplished using
the partial reconfiguration capabilities of modern SRAM-based FPGAs to speed up
the fault simulation process due to at-hardware speed processing.

Therefore, this dissertation focuses on two main themes related to dependability
of critical systems. The former is related to the improvement of fault tolerance
and recovery time capabilities of circuits mapped on SRAM-based FPGAs against
soft errors. The latter is related to the usage of FPGA platforms for reducing the
simulation times required for testing of custom ICs against permanent faults during
manufacturing. These objectives are achieved by exploiting the FPGA’s primitive
architectural resources and partial reconfiguration capabilities. The abundant and
underused architectural elements are used for novel techniques to error detection,
error localization, local repairing, fault injection and emulation in order to achieve
improved reliability, availability and evaluation times. The standard FPGA CAD
tools are not suitable for the achievements of these dependability-oriented goals and
requires the development of custom and semi-custom CAD flows and tools. The
following sections introduce in details the main problems undertaken in this work
and summarizes the main contributions.

1.1 Mitigation of Soft Errors

Traditionally, Triple Modular Redanduncy (TMR) and Dual Modular Redundancy
(DMR) are two widely used fault tolerance methodologies. TMR technique uses
a voting mechanism among the three redundant copies to mask faults and offer a
continued service until the accumulation of faults results in failure in more than one
TMR copies. This requires a periodic scrubbing of the configuration memory to
remove the accumulated faults. The DMR techniques use comparison mechanism
between the copies to detect faulty conditions, therefore, no masking mechanism are
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1.1 – Mitigation of Soft Errors

used. The adopted redundancy technique can be applied at a coarser or finer gran-
ularity of the design. Coarse-grain redundancy based approaches uses the voting or
comparison at a modular-level of the design. This means that the individual copies
of redundancy have larger logic inside them. This would translate to the increased
probability that MBUs will affect the redundant copies at the same time resulting in
un-detection or unmasking. Compared to the coarse-grain redundancy approaches,
fine-grain redundancy would mean that the comparison or voting is applied at the
smaller logic level and the individual redundant copies are of smaller size. This
decreases the probability that more than on redundant copy is affected at the same
time, therefore, it is a better methodology for dealing with MBUs.

If error detection and correction is the adopted methodology, as is possible with
FPGAs, then, the error detection and recovery time needs to be considered. For
coarse-grain approaches the error has to propagate through more logic to reach the
output or point of detection compared to fine-grain approaches, therefore, the error
detection time is larger for coarse-grain approaches. Similarly, the required time for
the recovery from a failure will be large in the coarse-grain approaches as the indi-
vidual copies are of large size. However, with fine-grain error detection approaches
comes the added advantage of fine-grain diagnosis capabilities meaning that local
repair procedure can be applied if the fault location is pinpointed. This can largely
contribute to reducing the recovery time of system as the recovery times is the con-
tribution of delay due to error detection and repairing procedure.

Although, fine-grain approaches are quite attractive from dealing with MBUs,
error detection and recovery time, however, the challenge is how to handle the huge
complexity of error detection logic for this method to become feasible for larger de-
signs. Consider that the comparison or voting is applied at a gate-level then every
two gates in the dual modular redundancy will generate an error flag signal. This
would require a huge routing overhead and control logic mechanisms and would
render the method useless. This work presents several novel contributions related
to fine-grain techniques for error detection, error diagnosis and repairing when ap-
plied to traditional TMR and DMR techniques. The main techniques investigated
and developed in this work for the mitigation of increased probability of Multiple
Bit Upsets (MBUs) in the FPGA’s configuration memory and reduction of recovery
times are based on granularity of the employed redundancy and reconfiguration.
These contributions are outlined in the following lines.

Fine-grain techniques for DMR
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1 – Toward Reconfigurable Computing Paradigm

The underutilized carry-chain resources available in abundance in state-of-the-
art FPGA’s can be used for fine-grain error detection, error diagnosis and fast local
repairing in self-repairing systems. A self-repairing system contains a static region
and a dynamic region. The static region consists of microprocessor, memories and
IOBs, namely, the resources that are always required for the correct operation of
the system and are fixed while the dynamic region contains the Circuit Under Test
(CUT). The static region is responsible the local repair procedure when error is
detected and diagnosed in the dynamic region. The CUT is duplicated and placed
in the dynamic region using carry-chains for error detection, flag convergence and
diagnosis purposes whenever they are not used for arithmetic computations in the
design. The availability of carry-chains for error detection purposes and the sizes
of synthesized LUT in the dynamic regions leads to logical and physical division
of design having different error detection capabilities. The large number of error
flag signals generated due to fine-grain comparison of DMR LUTs in dynamic re-
gions are aggregated to produce less number of flag signals along the FPGA’s CLB
column concatenating carry-chains. This greatly reducing the complexity of flag
control and management. The utilization of carry-chains not only brings the fea-
sibility of fine-grain error detection to large designs but it also offer a very fast
error propagation times making fast error detection a reality. This also enables the
fine-grain diagnosis of errors at the level of FPGA’s configuration frames. More-
over, as a configuration frame is the smallest unit of reconfiguration, the techniques
greatly improves the recovery times. As the carry-chain resources are only utilized
by CAD tools for realization of fast arithmetic computations, therefore, custom tools
were developed for insertion of error detection and flag convergence logic, packing of
LUTs in neighborhood and controlling placement of different error detection regions.

Fine-grain techniques for TMR

Cross-Domain Errors (CDEs) are a type of MBUs that are produced when a
charged particle hit the FPGA’s configuration memory and flip more than one
SRAM-cell belonging to two different TMR domains, thus, breaking the fault mask-
ing ability. The probability of such faults in today’s huge density SRAM FPGAs
due to close proximity of configuration memory cells are on the rise with each new
generation of FPGAs. This problem is not taken care of by commercial FPGA’s
CAD tools, therefore, often TMR domains are placed on the FPGA array in a man-
ner that the neighboring configuration cells belongs to different domains. Mixed
placement of TMR domains not only makes TMR scheme vulnerable to CDEs but
it also renders partial reconfiguration of domains impossible which is vital for op-
timizing the increasing scrubbing times with growing size of configuration memory.
Utilization of fine-grain approaches and non-overlapping TMR domain placement
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1.2 – Emulation of Permanent Faults

can reduce the number of CDEs and can bring down the recovery time for TMR cir-
cuits from full scrubbing to partial scrubbing of individual domains. Different types
of logic circuits are investigated for error detection purposes by connecting them
with majority voters in different structures. These error detectors generates a large
number of comparator signals which are aggregated together utilizing carry-chains
in CLB columns. This unconventional usage of carry-chains for flag aggregation and
the non-overlapping domain placement is not supported by commercial CAD tools
therefore custom tools were developed for accomplishing the goals.

1.2 Emulation of Permanent Faults

Photo-lithography driven VLSI chip fabrication technology is reaching its physical
limits due to aggressive technology scaling towards nano-metric dimensions. These
limitations manifest itself in form of manufacturing defects like stuck-at, stuck-open
and bridge fault to name a few. For the fast moving Application Specific Integrated
Circuits (ASIC) industry increasing the yield within stringent time-to-market re-
quirements is essential. Fault simulation is a mandatory step to determine the yield
of any VLSI chip fabrication process. However, the time required for fault simulation
is prohibitively huge. One reason of lengthy simulation times is the adoption of soft-
ware based mechanisms. Although they provide flexibility but are inherently slow
due to sequential nature of computations. An alternative solution is to use hardware
based fault emulation on state-of-the-art reconfigurable FPGAs which can greatly
reduce the timing requirements. The challenge is the fault equivalence which is
mandatory for a surety that every ASIC fault can be emulated with an FPGA con-
figuration. This problem is addressed using a perseverance based approach while
mapping a synthesized ASIC netlist on FPGA resources. The gates are clustered
together into LUTs with a controlled mapping phase bypassing the standard CAD
flow which lead to deterministic housing of gates to FPGA LUTs. The stuck-at
faults in netlist cluster housed in a particular LUT are emulated by reconfigura-
tion of the LUT. The exploitation of LUT resources for permanent fault injection,
fault emulation and fault removal required the development of custom tools for con-
trolled mapping, equivalent fault dictionary generation and test and binary format
conversion of test patterns. The developed approach not only achieves the same
fault coverage and significantly optimizes the fault emulation times but also avoids
re-synthesis and re-implementation altogether.
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Chapter 2

State-of-the-art

According to [12], dependability is defined as the ability of a system to avoid service
failures that are more frequent or more severe than is acceptable. The concept of
dependability requires the context of a system. Where a system refers to an entity
that interacts with other entities (or systems) including hardware, software, humans
and physical world in order to exhibit a certain behavior according to the a spec-
ification. The deviation from the the correct behavior for the user of the system is
called a failure. This failure can be caused due to the deviation of system from the
specification or because the specification are incomplete. The reason for the fail-
ure is the inability of the system to follow the correct sequence of its states. This
malfunction is the system’s state is referred to as an error. The induction of the
error to the system output depends on whether the error propagates to the system
outputs, therefore, it in not necessary for an error to always produce a failure. The
physical reason of an error lies in the system or its interaction with environment
and is often modeled with a fault. Thus, a fault is a hypothesized cause of an error.
A fault that produces a failure is active otherwise dormant. A fault represents an
abstracted view of a defect which is an unwanted anomaly between the specified
system and implemented one. Often, different kind of defects occurs in the sys-
tem which are modeled by appropriate fault models. The chain of dependability
threats is that a defect results in a fault, which results in an error which leads to
a failure. The period of time required for a fault to manifest itself as an error is
called fault latency while the time for a fault to convert to an error is called error
latency.

Today’s nanoelectronic circuits, due to shrinking device dimensional and lower
operating voltages and currents have high susceptibility to faults of different kind.
Permanent faults are created by manufacturing limitation in today’s photo-lithography
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based chip fabrication technologies or due to aging effects in circuits [38]. Aging ef-
fects are wear-out mechanisms which include time-dependent degradation of operat-
ing characteristics of device [39]. Main source of aging effects that creates permanent
faults are time-dependent dielectric breakdown, hot carrier injection, electromigra-
tion and Negative Temperature Bias Instability (NBTI) [40]. Particularly, NBTI re-
duces the static noise margin of SRAM-cells leading to the instability of SRAM-cells
in the configuration memory [42]. The resulting permanent faults includes shorts,
opens, timing-induced failures and cross-talk to name a few. Transients faults are
the result of temporary environmental influences like power supply and interconnect
noise, electromagnetic interference and electrostatic discharge. Electronic compo-
nents and systems in space as well as on ground are also effected by different types
of radiation sources. High energy protons and heavy ions are the prime source of
radiations in space while neutrons and alpha particles effects electronic systems for
terrestrial applications. Radiation sources have the potential to increase the charge
distribution near the channel of transistors. This charge accumulation, if crosses, a
certain critical charge value, which is quite likely with decreasing dimensional sizes,
can cause an output glitch at the output of transistor resulting in recoverable (often
called soft errors) and non-recoverable errors (often called hard errors) at the sys-
tems level. These effects are often termed as Single Event Effects and are the most
critical failures in logic and memory devices today [41]. SEEs are further divided
into soft errors and hard errors [10]. Soft errors are upsets to the device operation
which have transient effect and may disappear with time or may require a memory
re-write. Following are different kind of soft errors that exist in today’s FPGA-based
systems.

Single Event Transients are a voltage/current spike induced in the combina-
tional path due to impact of high energy-particles with the device. The pulse
width of this spike for sufficient duration can cause it to propagate through the
circuit and possibly sampled by a memory element in which case it changes
the state of the system.

Single Event Upsets are caused by the interaction of high-energy particles with
storage element of a device which changes the memory content. Because
SRAM-based FPGAs have a high density and larger size of SRAM-cell re-
quired for configuration memory, SEUs can effect not only the design flip-flop
and latches but it also effect the configuration cells which defines the logic and
routing of the mapped circuit. SEU effecting a single bit are called Single Bit
Upsets (SBU) while SEUs effecting more than one bit are called Multiple Bit
Upsets (MBUs). MBUs are common in latest technology FPGAs because of
the growing size and density of SRAM-cells.
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Single Event Functional Interrupts are disruptions to the normal operation of
a device and usually are related to a control or communication mechanism cru-
cial for the functionality of the circuit and typically requires a reconfiguration
or reset or power cycle.

Hard errors causes lasting damage to the device and are described below

Single Event Latchup is created by high-energy particles when a low-impedance
path is is induced between supply voltage and ground for CMOS devices re-
sulting in high current able to damage the device. It may be removed by a
power cycle of the device.

Single Event Burnout is caused by high-energy particle hitting the source of
transistors resulting in forward biasing, consequently resulting in short-circuit
and an avalanche effect. These errors are typically relevant for power MOS-
FETS, IGBTs and high-voltage diodes.

Single Event Gate Rapture is caused by heavy-ions resulting in the rupture of
gate-oxide isolation between gate and channel.

Xilinx FPGAs are quite robust against SEB and SEGR effects and therefore are less
of a concern [10]. Finally, the long time exposure of devices to radiation sources
result in the transistor’s threshold voltage to change. Consequently, the timing
constraints are violated as the performance of transistors degrades and result in
permanent failures. This effect is called the total ionizing dose (TID) of a device.

This dissertation specifically considers SEUs, MBUs and stuck-at faults models.
Furthermore, the considered attribute of dependability in this work are reliability,
safety and availability as defined in [12]. After discussing the dependability threats
to nano-electronics systems in general and FPGA’s in particular, system design
and mitigation techniques are considered next. System design techniques are the
means to attain dependability [12] and includes fault prevention, fault removal, fault
forecasting and fault tolerance which are explained in more details in the following
lines.

Fault prevention techniques eliminates or reduces the probability of faults in the
system. These techniques are designed to counteract the procedures that
creates the faults or the development of improved technological solutions to
withstand faults. One example is the usage of rad-hard components in space
applications. The downside is that such solutions are quite expensive from
economical point of view.
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Fault removal techniques detects, locates and removes faults in the system. The
related methodologies can be applied statically as the design and specification
phase or dynamically during the operation of the system. For example, formal
verification detects, locates and corrects fault in the design and specification
phases while FPGAs enable the dynamic detection, diagnosis and correction
of faults.

Fault forecasting techniques estimates that a fault occurs and evolves to failures.
The probabilistic estimates depends upon the fault distribution and propaga-
tion to the output and is an important tool to assess whether the required
values of target dependability attributes are achievable.

Fault tolerance assumes that the faults may arise even if fault prevention and fault
removal techniques are in place and aims at withstanding its effects while en-
suring a certain level of reliability in the service. Fault tolerance techniques
are based on different types of redundancy. Redundancy can be applied to
information, time and space. The information redundancy refers to the usage
of error detection and correction codes like hamming codes, SEC/DEC codes,
turbo codes to name a few. The time redundancy means that the computa-
tions are executed more than one and the results are compared. Finally, the
space redundancy means that the hardware is replicated more than once to
simultaneously compute and compare. The hardware redundancy can be fur-
ther divided into passive, active and hybrid. The passive redundancy means
that the hardware has the capability to operate even in case of a fault be-
cause it can mask the effect of a fault. Usually, passive redundancy uses more
than two redundant copies and votes them with a majority voter. The values
that occurs in majority is allowed to pass to the user. Triple Modular Re-
dundancy (TMR) is an example of passive redundancy. In active redundancy,
faults are detected and corrected and usually requires two redundant copies
but the operation of the system has to stop for the correction procedure to
be carried out, for example, Duplication with Comparison (DWC) based ap-
proaches. The hybrid redundancy schemes combines the fault masking and
fault correction capabilities and usually requires more hardware resources in
form of spare unit.

The design of dependable systems is a process that may requires iteration of design
and assessment until the desired levels of dependability attributes are attained.
Dependability assessment can be achieved at the design phase or latter after the
system is produced. The evaluation at design phase relies on models and may not
accurately describe the physical defects but can help with early mitigation. While
the evaluation carried out latter after the system production is carried out with
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different kind of testing procedures. This latter type may require longer duration of
times and is typically expensive but more accurately analyses the systems and the
mitigation strategies deployed.

For chip manufacturers, the classification of faulty vs non-faulty chips is an im-
portant economic problem. As the complex electronic system design and fabrication
process is far from fault free, a process known as fault simulation is mandatory. This
procedure utilizes a model of the actual system, a fault model, a set of test inputs
and determine the percentage of faults detected. This percentage of detected faults
ratio to total faults is called the fault coverage and is an important metric for the de-
pendability assessment of electronic systems. The process of fault simulation helps
in the critical effects analysis of faults, diagnosis of faults and improvement of test
input quality.

For after production, in field assessment of faults, mainly relevant permanent
and transient faults, fault injection is an important alternative to actually inducing
the fault from sources of faults like radiation, electromagnetic interference etc. The
fault injection process applies a model of the actual fault in the Circuit Under Test
(CUT), applies the appropriate inputs and analyses it effects. The ease and speed
with which faults can be injected are important parameters for a given fault injec-
tion approach.

2.1 Fault Injection and Fault Emulation

In this section, we outline some of the most relevant techniques used for emulating
ASIC faults on reconfigurable hardware based on FPGAs. These methods can be
mainly classified according to the adopted fault injection methodology.

2.1.1 Circuit Instrumentation based approaches

Circuit Instrumentation approaches add extra hardware resources in the design for
fault injection purposes. A dynamic fault injection approach is presented in [81]
[82] which instruments the model of circuit with a global shift register controlling
the activation of signals for fault injection. The activation signals selects between
duplicated LUT representing faulty and fault-free functions. The faulty behavior
is achieved by reconfiguration of LUT site designated to be faulty therefore no
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recompilation is needed. Independent faults are identified and instrumented in such
a way to inject multiple faults at the same time reducing the reconfiguration time. To
avoid reconfiguration and for fast injection of faults the authors in [83] [84] included
all the desired faults in the model and design and synthesized them necessitating
the activation of control signals in run-time using a scan-chain based fault injector
circuit. Instrumentation at the gate-level for fault injection and scan-chain based
activation mechanisms is used by the authors in [85] enabling them to avoid time-
consuming re-compilation steps for generating fault bit-streams. However, the size of
fault list is directly proportional to the hardware complexity of the injector circuitry,
introducing a bottleneck for large VLSI circuits. To attain more speed up for the
whole process of fault injection, test patterns applications and faults classification,
a system is proposed by authors in [86] [87] that exploits the idea of minimum
communication between host and emulation platform. To summarize, techniques
based on circuit instrumentation are intrusive in nature and in cases have large area
overhead.

2.1.2 Reconfiguration based approaches

Reconfiguration based fault injectors modify the configuration bit-stream of the de-
sign to emulate faults. The authors in [88] utilize a commercial fault emulation
platform that constrains the technology mapping of logic cones to LUTs and gen-
erates a corresponding bit-stream for each fault in the logic cone in form of FPGA
reconfiguration list. The authors show that for designs with more than 100,000 gates
hardware emulation is two times fast compared to software fault simulation. JBits
based tool-flow [89] is used for directly changing the configuration bits of a CLB in
order to inject faults by authors in [90] [91] [92]. However, JBits is no longer sup-
ported for state-of-the-art commercial FPGAs. A direct bit-stream manipulation
based injection is used by the authors in [93] [94] to inject faults in LUTs without
constraining technology mapping. They reduce the size of fault list by considering
only the active inputs of LUTs. However, this technique does not guarantee that ev-
ery ASIC fault will be covered. The fault injection for a wide variety of fault models
was presented in [95] where the authors develop faulty bit-stream by changing the
HDL models. This requires time-consuming re-compilation for each injection of the
fault model. Another interesting work exploiting partial reconfiguration for fault
injection is presented in [96]. The authors present a methodology for the correlation
of stuck-at fault model with that of Single Event Upset (SEU) fault model. Improv-
ing and generalizing upon the methodology presented by authors in [88] this work
develops a general framework for fault emulation on commercial FPGA platforms
without resorting to expensive platforms and vendor tools.
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2.2 Fault Tolerance Techniques for FPGAs

In FPGA community, the terminology of fault tolerance is loosely used to cover the
fault masking as well as fault removal design mitigation techniques. The following
subsections describes in more details the approaches.

2.2.1 Error Masking and Correction

Error masking techniques ensures the correct operation of a system while withstand-
ing the effects of errors in the system. Spatial redundancy utilizing majority voting
function among the redundant copies is the most commonly used masking approach
termed as N-modular redundancy. The values of n is an odd number usually and
is often taken to be 3. This kind of 3-modular redundancy is called Triple Modular
Redundancy (TMR). The overall system is operational until two out of three copies
continues to work correctly.

Spatial redundancy can be applied at several granularities of the design as de-
fined in [61] [62]. Mainly, the granularities of applications are coarse-grain and fine-
grain. In a coarse-grain TMR scheme like Block TMR [61] or large-grain TMR [63],
the redundancy is applied to larger chunks of logic design and are then voted by a
majority voter. The issues with this approach is that the internal flip-flop’s state
can not be restored even after the system is reconfigured. Therefore, in order to
store the state each flip flop must be feed with the corrected values produced by
the voting mechanism. This kind of feedback structure with voting ensures that
after reconfiguration the state of redundant copies will be synchronized after a few
clock cycles. A scheme that uses feedback with voting for each flip flop is called
local TMR [62]. LTMR protects against SEUs but as the combinational datapath
is vulnerable to SETs, therefore, SETs with enough width can be sampled by user
flip flop’s and can be converted to SEUs. Moreover, the global routing and reset
signals are not triplicated in LTMR and can become a single point of failure. To
cope with this issue combinational datapath is also triplicated along with global
clock and reset signals. This scheme is called Global TMR (GTMR) and is able to
withstand SEUs and SETs. The difficulty lies in using three different clock domains
due to the clock skew and synchronization problems. A relaxed scheme that do not
triplicates clock and reset signals is called Distributed TMR (DTMR) [61]. The
fine-grain TMR approaches encompases LTMR, GTMR and DTMR schemes.

Xilinx TMR (XTMR) is another fine-grain TMR approach that closely follows
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the GTMR methadology but offers flexibility regarding applying the redundancy to
I/O’s, FF’s and clock resources. Figure 2.1 shows the typical scenario of circuits
implemented with Xilinx TMR tool [64]. It is possible to notice that the architecture
consists of partitions and domains, where domains are the replicas of the original
circuit while partitions are the division of the logic resources by the three voter
elements. According to the data structure to be hardened, commercial redundancy
tools (e.g., Xilinx TMR tool), handles throughput logic, state-machine logic, I/O
logic and special features differently. For example, partition 2 as shown in figure 2.1,
represents state-machine logic where the majority voter is inserted on the output of
a state register that loops back to the combinational logic in the same domain. This
arrangement ensures that an SEU will be automatically corrected by the inherent
synchronization due to three voting structures in feedback path with the registers
before the next upset occurs. The output logic in partition 1 in figure 2.1 shows a
minority voting based structure to combine the output from the three redundant
copies into a single output. In case of a fault in any domain, the corresponding
minority voters will tri-state the corresponding output. This helps to avoid signal
contention on the output package pins of the FPGA. The TMR architecture shown
is figure 2.1 has only one signal group where a signal group refers to the triplet of
majority voters that receive the same inputs signals. However, in real circuits each
domain consists of multiple signal groups that cross the boundary form one partition
to the next partition.

Authors in [65] implement the XTMR architecture on Virtex FPGA and test it
with fault injection and radiations. They conclude that there were faults created
by single bit flips that effects more that one redundant copy. Investigations showed
that this faults occurs due to the placement of TMR domains in close proximity to
each other such that they share the same routing matrix. With the growing device
densities the probability that these Cross-Domain Errors (CDEs) will become sig-
nificant rises as shown in [66]. This motivated researchers to develop methodologies
to mitigate such faults [37] [67] [63]. The first approach presented in [37] decreases
the chances of faults effecting more than one TMR domain by careful placement and
routing avoiding the resources to be present in close proximity. The authors in [67]
instead takes a different approach by introducing redundancy in routing paths which
enhances and increasing the fault tolerance ability because even in the presence of
faults a connection for the delivery of information is more probable to exist. The
third approach presented in [63] is based upon converting the fine-grain TMR to
a more larger-grain TMR by removing the internal majority voters introduced for
each flip flip state restoration. However, the proposed methodology resorts to a
much complex synchronization scheme which has only limited applications.
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Works in [68] [69] investigates the trade-off that exists while resorting to different
level of granularity with regard to application of redundancy. The investigations of
these works shows that coarse-grain redundancy has low area-overhead compared
to fine-grain redundancy approaches, however, fine-grain approaches makes it less
likely two redundant copies are simultaneously effected.

Another aspects with which redundancy is applied is diversity. Diversity means
that the individual redundant copies can have different implementation realizing the
same functionality [70]. There may be difference in execution times of different im-
plementations of Diversity TMR, therefore, it may require mechanisms for synchro-
nizing the results from the redundant copies. Recently, the authors in [71] showed
that DTMR increases the fault tolerance of circuits implemented on SRAM-based
FPGAs by more than 36% compared to traditional TMR schemes.

In order to introduce the overhead of TMR scheme, the authors in [72] proposes
a Partial TMR (PTMR) that selectively applies redundancy to critical elements
of the design. The idea exploits the fact that not all configuration bits effects the
implemented design. The effective bits were termed as the sensitive bits out of
which a small portion of bit were identified as persistent bits. The persistent bits
required reset operation and were not repairable by simple reconfiguration. The
authors showed an adequate level of reliability with reduced overhead, however, the
method’s attractiveness reduces when applied to designs with large number of feed-
back paths.

Although, the techniques discussed above improves the masking capabilities of
circuits implemented on SRAM-based FPGAs, the accumulation of faults in the
configuration memory can, overtime, render the masking capabilities useless. There-
fore, for the correction of faults in the memory correction procedures are compul-
sory. The most commonly known methodology is called scrubbing. TMR with blind
scrubbing technique [73] writes back the whole bit-stream after a certain amount of
time known as the scrub cycle. The scrub cycle is selected according to the SEU rate
and is usually set to ten times the upset rate for the application and device technol-
ogy at hand [73]. This technique has the advantage of avoiding the accumulation of
Multiple Bit Upsets (MBUs) that may cause multiple bit flips in the configuration
memory. However, the frequent scrubbing and the comparatively long duration of
scrub cycle, exposes this method to increased probability of an SEU corrupting the
configuration data during scrubbing. This can lead to catastrophic effects including
the corruption of functionality and on-chip contention, which in turn causes high
currents large enough to damage device subs-tram.
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Figure 2.1. Xilinx TMR Architecture

2.2.2 Error Detection and Correction

The error detection and correction techniques identifies the existence of errors and
removes them using reconfiguration. Following sub-sections categories the existing
approaches.

2.2.2.1 Bitstream-level techniques

The correction of faults in the FPGA configuration memory requires the write-back
of the golden version of the bitstream. In order to reduce the overhead of blind
scrubbing [73], several other approaches based on manipulation of the bitstream are
developed which involves some form of error detection and then correction. Read-
back scrubbing [74] is a process in which the configuration bitstream is readback
and compared with a golden version of bitstream stored in an off-chip non-volatile
memory. The write-back is only performed when there is a difference between the
two bitstreams. Although, the readback scrubbing is more efficient than the blind
scrubbing, still readback has to be performed continuously which is a time consum-
ing process.
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There are other techniques based on information redundancy added to the bit-
stream. Cyclic Redundancy Codes (CRC) are computed for each bitstream by the
software tools and are stored as a part of bitstream. The FPGA configuration engine
circuitry contains CRC checksum calculation during the configuration (writing or
readback) process and is able to detect if the CRC codes computed by the software
tools and the currently computed one matches [75]. This technique can only detect
errors and can not locate it. Authors in [76] proposes a technique to use a CRC at
the level of individual frame enabling them to identify the faulty frame and solely
repair it.

Another methodology is to use Error Correcting Codes (ECC) techniques which
has the ability to localize the faults in the bitstream frames. State-of-the-art FPGA’s,
like Virtex-5, contains a 12 bit ECC code embedded inside each of its 1312 bits high
frame. These codes are based on hamming and parity codes usages and are often
termed as Single Error Correction and Double Error Detection (SECDEC) codes. It
is possible to combine these capabilities with partial reconfiguration for realization
of frame-level error detection and correction functionality. The advantage of this
technique is that the reconfiguration time is very low and the probability of SEU
corrupting the configuration data is nullified. However, the configuration engine of
the FPGA is unavailable for run-time dynamic partial reconfiguration which is re-
quired for adaptive hardware systems. Moreover, the continuous error detection and
correction procedure requires energy. A scheduling based technique is proposed by
the authors in [77] to deal with the aforementioned issue which introduces its own
challenges in terms of implementation and synchronization and can end-up using
more resources in hardware for achieving this task. Moreover, read-back scrubbing
cannot detect MBUs in multiple frames which can cause functional faults of the
system.

2.2.2.2 Circuit-level techniques

Detecting SEU effects by configuration read-back and/or comparison or error de-
tection and correction codes removes every bit-flip from the FPGAs configuration
memory. However, every bit is not significant and could not result in circuit level
functional fault [74]. Therefore, circuit-level error detection, localization and correc-
tion can significantly reduce the overhead related to continuous/regular scrubbing.
Error detection, localization and correction can be applied to a variety of redun-
dancy techniques (like TMR and DMR) at various levels of granularity (coarse-grain
vs fine-grain). Fine-grain error detection can accomplish the fast detection of fault,
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fine-grain localization enable accurate and precise diagnosis of fault areas while fine-
grain reconfiguration results in fast recovery time.

The advent of run-time partial reconfiguration and the growing device densi-
ties of SRAM-based FPGAs are motivating researchers to explore ways to combine
TMR based masking techniques with partial reconfiguration. These approaches can
reduces the recovery time compared to the full scrubbing of the bitstream. The
authors in [78] [63] [79] proposed a methodology to selectively reconfigure a faulty
domain, by combining large-grain TMR with partial reconfiguration. A scan-chain
based error detection mechanism is adopted by [78] for TMR circuits, however, the
method is applied at a larger granularity and the error detection time is directly
proportional to the time for traversing sequentially through the scan-chain. This
severely limits the scalibility of the approach. An error-detection logic embedded
in the voters in [63] [79] enabled the identification of faulty domain. The effects of
CDEs were minimized by removing the voters in the internal TMR partition [63].
This leads to synchronization issues after the faulty TMR partition is reconfigured.
This is solved by predication based approach which can only be applied to small
finite state machines. Another interesting but preliminary work in [80] proposed
a dynamic domainlevel reconfigurable TMR architecture which has the abilities of
error detection, localization, repairing and resynchronization. The authors adopt
a high-level methodology for triplication and insertion of error detection logic at a
coarse-grain level.

Error detection, localization and correction techniques can be applied to DMR
systems. Authors in [69] investigates the usage of fine-grain duplication with com-
parison at the granularity of LUTs. The approach proposes to closely pack two
duplicated LUTs and compare them with XOR gates. The probability that faults
will effects the same comparing group is very low due to the fine-granularity used.
Therefore, the proposed technique increase the reliability of circuits, however, it
requires modifications in the FPGA fabric and is not directly applicable to commer-
cially available FPGAs. This triggered research work in directions of utilizing the
fine-grain approaches for reducing the recovery time for circuits mapped on com-
mercial FPGAs [54]. The proposed approach realizes fine-grain duplication with
comparison placing two duplicate LUT in a slice and compares them with carry-
chain resources. As carry-chains can be extended along the column of CLBs, the
proposed method reduces the generated check flag signals by aggregating them along
the CLB column with carry-chains. The author also improves the routing reliability
by special placement of duplicated LUTs avoiding the usage of switch matrix to effect
two copies simultaneously. Furthermore, the author also presents local diagnostic
and repair methods to enable fast repairing thus reducing recovery time. However,
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the methodology cannot detect multiple bit errors in frames due its dependence on
a chain of XOR and XNOR gates which acts like an odd parity circuit.

2.3 Limitations of current approaches

The presented techniques in section 2.2 and section 2.1 does not take the full ad-
vantages for the available architectural and reconfiguration capabilities of modern
SRAM-based FPGAs for fault tolerance and fault emulations. The architectural
primitive like LUTs, carry-chains, TIEOFF elements can be used in novel and
unconventional ways to improve the dependability aspects of circuits mapped on
SRAM-based FPGAs.

The abundance and availability of carry-chain resources can be put to different
applications for improving the fault tolerance capability as pointed out by [54]. The
carry-chains based circuits were only applied to detection of single bit errors in the
configuration frames, however, the detection of multiple bit errors is left open to
investigate. Moreover, carry-chains along-with error detection logic can be used to
detect errors in TMR domains which can then be selectively reconfigured. However,
this reconfiguration requires that the TMR domains should be placed separately
and the resource should not overlap for partial reconfiguration requirements to be
fulfilled. The current CAD tools for commercial FPGAs do not support such non-
overlapping placement. The non-overlapping placement can simultaneously reduce
CDEs and reconfiguration times.

The techniques presented in section 2.1 often required re-compilation and re-
implementation which are slow and time-consuming processes. A techniques pre-
sented in [88] improves upon it by eliminating the need of re-compilation and re-
implementation by exploiting the flexibility of LUT for emulation of stuck-at faults.
However, the technique cannot be directly applied to state-of-the-art FPGAs. This
fine-grain fault injection can potentially speed up the whole emulation process and
can be extended to other fault models.
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Chapter 3

FPGAs based Dependable Sytem
Design

3.1 Field Programmable Gate Arrays

An FPGA is a pre-fabricated circuit consisting of Input/Output ports, programmable
logic and programmable routing resources that enables them to realize any logic
function just by downloading a configuration bitstream. With latest generation of
FPGAs, it is possible to change the functionality of a portion of the running design
while the rest of system is still running opening up doors to many applications not
realizable before. Sophisticated set of CAD tools designed for optimizing different
goals usually related to performance and cost are used for mapping user design
on FPGAs. While dependability and reliability is becoming a growing concern for
some users, to most users the traditional goals of performance and cost are more
important, therefore, vendors tools and support are often limited and leaves room
for research and development. In order to fully exploit the potential of these devices
in dependability applications it is important to deeply understand the architectures,
design techniques and reconfiguration details. The following sections presents the ar-
chitecture and configuration memory layout of state-of-the-art commercial FPGAs.
This knowledge is particularly relevant for identifying the main reason of different
type of radiation effects and provides insights of how to exploit the FPGA’s archi-
tecture in cases where commercial tools fail to provide the required capabilities.
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3.1.1 Architecture

Fundamentally, an FPGA contains three main components: Logic Blocks (LB), In-
put and Output Blocks (IOBs) and programmable routing interconnect network.
The LBs are responsible for the realization of combinational and sequential logic
while the routing network connects them together. The interface to the outside
world is provided by the IOBs. Furthermore, the programmable routing intercon-
nect network is composed of switch boxes, connection boxes and pre-fabricated rout-
ing network. Commercial FPGA devices can be classified into three groups based
upon the routing networks utilized: Xilinx and Lucent use Island Style, Actel FP-
GAs are row-based while Alteras FPGAs are hierarchical and Island Style. A more
detailed explanation of the routing architectures can be found in [18] [19]. As the
methodologies and techniques developed in this dissertation are applicable to Xilinx
FPGAs only, therefore, Island-Style routing model will be considered. A simplified
Island-Style FPGA architecture [20] is shown in figure 3.1. The Connect Block pro-
vides In and Out connectivity to LBs while the switch box provides connectivity
to global routing resources. The following subsections provides details about the
architectural component of Island-Style model as applied to Virtex-5 FPGAs.

Figure 3.1. Island-Style FPGA architecture
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3.1.1.1 Configurable Logic Blocks

The Configurable Logic Block (CLB) is the main resource for implementing combi-
national and sequential logic. In a Virtex-5 FPGA, a CLB is composed of two slices
often represented with even and odd coordinates as shown magnified view in figure
3.2. Moreover, a slice contains a number of Basic Logic Elements (BLEs) depending
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Figure 3.2. Virtex-5 Slice and Interconnect Tile

upon the architecture and family, figure 3.3 shows a BLE for Virtex-5 FPGA.

It can be noted that a BLE contains Look Up Table (LUTs) which acts as function
generators, some control and carry-logic elements and sequential logic in form of
storage elements which can act as flip-flops or as latches. In Virtex-5 architecture,
four BLEs come together to form a slice as shown in figure 3.4.

The even and odd slices have no direct connections while the slices in an even/odd
position along the column can be connected through dedicated wires of the carry-
chain elements. This is very important feature for realization of fast arithmetic
computation and a feature that is thoroughly exploited for dependability-oriented
applications in this dissertation as will become clear in the next chapters. The
6-input LUTs are an important feature of these FPGAs which has an impact on
efficient resource utilization. The architecture of 6-input LUT is that of a fracturable
LUT [21] which can act as two 5-input LUTs or as one 6-input LUT as shown in
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Control and Carry-Logic 

Flip-Flop 

Flip-flop 

Figure 3.3. Virtex-5 Basic Logic Element

Figure 3.4. Virtex-5 Slice Internals

figure 3.5. The fracturable nature of LUTs have alot of applications for dependability
oriented designs given that the synthesis and packing are properly controlled [22]
[23]. In order to understand the mechanics of how combinational logic functions
are realized with LUTs, consider the example shown in figure 3.6. It can be noted
that the truth table output is stored in SRAM cells which are selected by a tree of
multiplexers controlled by the LUT address lines i-e I2, I1, and I0. The circuit on
the left uses wires a, b and c as inputs. In this case, wire a is binded to I2, wire b
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I2 
I2 

Figure 3.5. Virtex-5 Fracturable LUT

is binded to I1 and wire c is binded to I0. This binding of functional input wires
to LUT address lines has important consequences for the delay of mapped circuits,
therefore, the router optimizes this binding to have optimal delay [24]. Moreover,
this binding determines the LUT mask for configuration of the LUT functionality
as shown in figure 3.6, the LUT mask D5 will configure a 3-LUT in Xilinx world to
the function under consideration.
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3.1.1.2 Interconnect Network

The routing network of FPGAs consists for pre-fabricated wires segments of varying
lengths and programmable switches. These wire segments can be extended by con-
figuring one or more switches, thus, multiple wiring segments can be connected in
this manner to form routing tracks. The wires segments are organized in horizontal
and vertical channels as shown in figure 3.2. The FPGA routing network should
be flexible and efficient and is designed such that most of the wires are short while
there are spare long wires as well. The abundance of short wires are there to fully
exploit the principle of locality as most user designs requires short interconnects
more frequently that long ones [18]. However, the long interconnects using fewer
number of switches can greatly reduce routing area and delay [18]. The problem
with the long wires is that it decreases the routing flexibility and consequently the
design can become un-routable. The wires distribution in Virtex-5 can be discovered
using the FPGA editor tool from Xilinx. In particular, the wires include bounce-
across, double, pent, long and global lines. The bounce-across wires can connect a
CLB directly to a neighboring CLB. The double wire can connect a CLB to the first
and second neighboring CLBs. The pent wires are used to interconnect the second
and fifth neighboring CLBs. The long lines are capable to connect sixth, thirteenth
and twentieth neighboring CLBs. The global lines can connect CLBs from the first
to twentieth neighbors. With respect to Virtex-4 routing architecture, hex lines
which were used to connect the second and sixth neighbors are missing. Moreover,
the accessible locations for a CLB forms a diagonally symmetric patterns providing
connectivity in less hops and improving routing delay considerably [25]. The hor-
izontal and vertical channels can are connected through a Global Routing Matrix
(GRM) as shown in figure 3.2. GRM consists for a collection compound cross-point
Programmable Interconnect Points (PIPs) as shown in the magnified view in figure
3.2. Each PIP is a pass transistor that can connect or disconnect two wire seg-
ments. It can be noted that the cross-point PIP uses six transistors and provides
turns for horizontal to vertical wires and vice versa. GRM provides connectivity to
the global routing network, locally, a Switch Matrix (SM) located near CLB provides
connectivity to the CLB. SMs makes it possible to realize direct connections among
the BLEs for a particular CLB and its immediate neighbor thus avoiding the global
routing network which can have large routing delay. SMs are a collection of different
kind of PIPs including break-point PIPs and multiplex PIPs [26]. These PIPs types
provide direct, multiplexed and de-multiplexed connectivity for the CLBs. Each
type of PIP switch is controlled by different number of SRAM-cells consequently
the amount of configuration bits required for programming the routing interconnec-
tions in modern SRAM-based FPGAs is huge compared to the configuration bits
required for implementing the logic functionality. This has important consequences
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on the dependability aspects of circuits mapped on SRAM-based FPGAs making
them extremely vulnerable to routing failures of different kinds as will be explained
in details in sections 3.2.

3.1.2 Configuration Memory Organization

• Rows (Clock 
Regions) 

 

• Major Column  

• Minor Column 

Fr
am

e 
0

 

Fr
am

e 
35

 

Fr
am

e 
1

 

Fr
am

e 
25

 

CLB Major Column 

2
0

 C
LB

 H
ig

h
 

IO
B

 c
o
lu

m
n

 

B
R

A
M

 c
o
lu

m
n

 

D
S

P
 c

o
lu

m
n

 

C
M

T
 c

o
lu

m
n

 

Clock Region  

D
S

P
 c

o
lu

m
n

 

 B
R

A
M

 c
o
lu

m
n

 

IO
B

 c
o

lu
m

n
 

T
O

P
  

B
O

T
T

O
M

  

Row 0 

Row 1 

Row 0 

Row 1 

Figure 3.7. Architectural and Configuration Memory Layout of modern
heterogeneous FPGAs

The reconfiguration capabilities of state-of-the-art FPGAs is a direct consequence
of their configuration memory layout and architectures. Figure 3.7 shows a simpli-
fied view of the Virtex-5 FPGA architecture. Horizontally, FPGA’s architecture is
divided into two halves represented by TOP/BOTTOM which is further fragmented
into a number of rows as illustrated by white separations in figure 3.7. The num-
ber of rows is architecture and FPGA family dependent. Each row signifies a clock
region, which is an area of the chip able to be clocked from a local clock source
derived from the global clock tree [27]. Vertically, the chip is divided into columns
of resources of different types, for example, a column of IOBs, DSPs, BRAMs and
CLBs to name a few. Each column of resource is called a Tile. In figure 3.7, the
Interconnect Tile (INT) are not shown explicitly because in the configuration bit-
stream they are not separately addressed but are considered as a unit with the
neighboring tile [28]. The configuration bitstream consists of header, dummy and
synchronization data and packets [29] [30]. Header lets the configuration engine
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know about the FPGA part, data and time of creation while the synchronization
information is used to lock onto the sequence of words the controller recieves from
configuration interface like JTAG. Packets acts as instructions to the configuration
controller and write/reads to different configuration registers. An important reg-
ister is the Frame Address Register (FAR) which enables access to configuration
data of individual tiles. Each tile of resource can have different complexity and
requires different amount of configuration frames [30]. The configuration bitstream
is organized in frames which is the smallest unit of reconfiguration. The CLB tile
requires 36 frames in Virtex-5 configuration bitstream as shown in the magnified
view in figure 3.7. A frame is always 1-bit wide and 20 CLBs high in Virtex-5.
A detailed description of a INT+CLB configuration frames are illustrated in figure
3.8. These frames are responsible for programming the interconnect tile and slices
of a CLB. It can be noted that a single slice is reconfigured by using 4 consecutive
frames and as each LUT requires 64 configuration bits each frame has 16 bits for a
LUT in the slice. This detailed information is useful for the purposes of fine-grain
reconfiguration for dependability-oriented applications. Each frame in the configu-
ration bitstream is identified by a unique frame address. The frame address is 32 bit
wide entity and contains several fields as explained in details in configuration user
guide [30]. The frames that are responsible for the configuration of certain resources
are a property of the location of chip area that is utilized by the resources mapped
and is determined by the placement phase of CAD flow of commercial FPGAs.
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3.1.3 FPGA CAD Flows

The CAD tools are an important piece of software that automates and optimizes the
design and implementation of circuits for a particular target technology. The de-
sign and implementation of VLSI circuits in today’s world can not be accomplished
without the use of sophisticated software tools. The flow starts by design entry
using HDLs or schematically or more recently from a higher-level description like
C/C++ (High level synthesis) [31]. The synthesis process is responsible for extract-
ing the gate-level circuit for the realization of RTL level description of the design.
This process is often called multi-level synthesis for modern VLSI circuits as the
synthesized circuit are realized in multi-level logic as opposed to the two-level logic.
This has important optimization with respect to area, delay and or both [32]. The
multi-level representation is a general circuit often utilization gates that may not
be available in target technology library. Therefore, the technology mapping step is
responsible for converting the multi-level technology independent netlist into a tech-
nology dependent netlist. For FPGAs, the end product of this process is a LUT-level
netlist. In Xilinx CAD flow these two steps are tightly integrated into a synthesis
front-end process called Xilinx Synthesis Technology (XST). The LUT-level netlist
is then passed through the packing phase which clusters the LUTs together in or-
der to optimize for local routing and reduces the number of LUTs using fracturable
LUTs and forms slices. This is also an important phase which has consequences
on area and delay [19]. This phase, if controlled, can also enable the utilization of
fracturable nature of LUT for dependability-oriented purposes [23] [22]. The next
phase is placement which is the assignment of physical locations to the slice-level
netlist on the chip. The physical location again has important consequences on area,
delay and reliability [33] [34] [35]. These processes of packing and placement are
integrated into a combine phase called mapping in the Xilinx terminologies. The
next phase of routing is the optimization of routing interconnections utilizing the
pre-fabricated and configurable routing network. This is often a timing consuming
and difficult optimization process and one that has important consequences of speed,
area, power and reliability of mapped circuits [36] [37]. The final phase of the flow
is the generation of configuration bitstream for the final placed and routed design.

For utilization the capabilities of partial reconfiguration in run-time environment
the CAD flow differs from the standard flow that is described before. In particular,
the run-time partial reconfiguration puts its own design rules and physical con-
straints that must be satisfied in order to successfully utilize this technology [17].
The commercially available CAD flow is based on partitions-based partial reconfigu-
ration required for systems which changes its functionality in the run-time. This kind
of designs are characterized by the requirement that different hardware tasks should
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be able to use the same area on the chip given that they are not used at the same
time. Instead, this dissertation is focused on the localization of faulty area of the
design and its correction at a fine-grain level, therefore, the commercially available
partial reconfiguration CAD flows are not adequate for these purposes. Therefore,
the reconfiguration approaches utilized in the upcoming chapters are not following
the standard partial reconfiguration flows and proposes alternative methods.

3.2 Dependability on reconfigurable devices

This section describes the strengths and weaknesses of SRAM-based FPGAs tech-
nology that are relevant from dependability aspects.

3.2.1 Radiation effects on mapped circuits

For designs mapped on SRAM-based FPGAs, SEUs are the most widely studied
and researched [43] [44] [45]. The SEU in the configuration memory can effect the
CLBs of the design as well as the routing interconnections [37]. In case a CLB is
affected target primitives can be LUTs, flip-flops, carry-chains and inputs/output
muxes [46]. In the case a flip-flop is effected, the error induced alters the stored value
in the flip flop, however, in the next cycle the flip flop samples a new values which is
correct. The critically of this type of error depends upon the location of flip-flop in
the design and the probability of it being sampled and reaching the primary output
of the circuit. In case a LUT is affected, the logic functionality of the mapped
circuit changes and the effect stays on until reconfiguration. The muxes inside
CLB responsible for realization of wide-functions and feeding of carry-chains/flip-
flops can also be affected in which case wrong signals may be propagated or signal
path can break. The abundance of routing resources in SRAM-based FPGAs makes
them particularly vulnerable to upsets in the routing and therefore different types of
affects are possible [47]. An SEU in the GRM of the routing network can create short,
open and antenna effects as presented by the authors in [48] and re-produced in this
chapter as depicted in figure 3.9. An open is created if an SEU hits a PIP breaking
the connection and resulting in dangling inputs to the CLBs or the outputs as shown
in figure 3.9a. It is possible that an SEU affects the GRM in such away that a new
connection is created between an output PIP and an input PIP while the connection
to the old input PIP still exist. This creates a short effect as shown in 3.9d. Another
type of routing effect is open/short or antenna effect in which case the old connection
is deleted and a new one is created, however, the new one is not driven by any
known logic values as shown in figure 3.9c. Short and antenna faults are multiple
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effects of SEUs, often termed as Multiple Bit Upsets (MBUs), and are commonly
created due to the usage of decoded-mux PIPs [37]. It has been shown that with
dimensional scaling the probability of occurrence of MBUs is rising [49]. These
routing failures have the potential to disrupt the normal operation of unprotected
as well as protected designs utilizing redundancy based fault tolerance techniques
like Duplication with Comparison (DWC) [50] and TMR [37] if proper placement and
routing methodologies are not employed. Routing failures can also effect the design
utilizing DPR thereby inducing faults between two Partially Reconfigurable Modules
(PRMODs) severally handicap the static and dynamic regions of a reconfigurable
systems [51].
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Figure 3.9. Single Event Effects on Routing

3.2.2 Reconfigurability

The vulnerability of SRAM-based FPGAs to radiation-induced upsets is a mani-
festation of the underlying programming technology i-e SRAM-cells. However, the
same programming technology gifts them with reconfiguration capabilities which are
increasingly becoming an important design tool for achieving flexibility, power, cost
and reliability goals [52] [53]. For example in Software Defined Radio (SDR) the
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same reconfigurable hardware platform can be used by swapping in and out mod-
ules for on-demand waveform processing according to user needs. Similarly, the SDR
can communicate over a number of frequency ranges and communication standards
thanks to reconfiguration. Partial reconfiguration has the potential to reduces the
static and dynamic power components of the design [52]. As the focus of this disser-
tation is dependability therefore the aspects of reconfiguration applied to achieving
dependability goals are interesting and one that has gained significant attention re-
cently. The growing size and density of configuration memory in state-of-the-art
SRAM-based FPGAs have important effects on the performance and dependability
of implemented systems. Although, the growing configuration memory translates
to powerful computation capabilities that the fabric offers but unfortunately it in-
creases the probability of MBUs in the configuration memory [49] and increases the
reconfiguration times [54]. To cope with the increased probability of MBUs, hard-
ening techniques applied from the design phase to the final place and route phase
are necessary along with reconfiguration. The reconfiguration times are increasing
steadily with each new generation of FPGAs. This increase, on one side is due to
the increasing size of configuration memory but on the other side is due to the unim-
proved speed of reconfiguration interfaces available on the fabric. For real-time fault
tolerance capabilities the reconfiguration time is an important factor that determine
if deadlines can be met. Fine-grain reconfiguration at the level of frames can be used
to reduce the reconfiguration overhead in case of upsets in the configuration mem-
ory. Combined with fast error detection this can significantly reduces the recovery
times of systems. However, fine-grain approaches to reconfiguration requires CAD
support which is often not available with standard vendor tools therefore alternative
and ad-hoc tools that can integrate with standard flows are necessary.

3.3 Tools for Open-source Reconfiguration

This dissertation is focused on the usage of FPGA’s primitive resources in an uncon-
ventional manner to achieve dependability-oriented goals including fast error detec-
tion, fast reconfiguration and more control than offered by standard tools. Therefore,
it is necessary to work with and develop custom ad-hoc tools and flows that can in-
tegrate with standard flows to achieve the desired ends. In the research community,
there has been a serious effort since many years to come up with an open-source plat-
forms that brings reconfigurable computing in reach of everyone [55] [56] [57] [58].
The Versatile Place and Route (VPR) has been the primary research tool for archi-
tectural exploration and CAD tools development encompassing technology mapping,
placing and routing. This tool can work with generic FPGA architectural models
and has been primarily used with in academic world and latter has been integrated
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by Altera for its applications to commercial FPGAs. An effort to use VPR with
Xilinx FPGAs has been recently proposed in Verilog to Routing project (VTR) [56].
Rapidsmith [57] and Torc [58] are two very powerful software platform that are able
to work with commercial Xilinx FPGAs. They utilize the XDLRC description [59]
to build up an accurate and precise architectural database upon which the tools
offers several APIs for development of algorithms related to mapping, placing and
routing. Both the projects are offering quite similar capabilities, however, Rapid-
smith is based on JAVA while Torc is based on C++ and boost libraries [60]. This
work utilizes the Torc framework extensively and develops upon it.

Figure 3.10. TORC structure

Figure 3.10 represents the design structure of Torc APIs. The generic API can
read, modify and write netlists in Electronic Design Interchange Format (EDIF).
This is a very important and useful interface which can be used to import designs
synthesized with other synthesis tools, modify it according to user needs and then
export it in a format compatible for FPGA tools to work with. For example, this
work uses it for insertion of error detection and flag convergence logic at a post-
synthesis phase and converting flat netlists to hierarchical netlists. Utilizing the
generic API, users can work with unified generic object models and can transform
and cluster the input graph nodes to FPGA primitive resources like LUTs, FFs and
carry-chains. This phase denoted by mapper in figure 3.10 is currently incomplete,
however, this work develops a limited version of this mapper that can convert gate-
level synthesized netlist to LUT-level clustered netlist without duplicating gates
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while mapping. This mapper is utilized for emulation of permanent faults of custom
ICs on FPGAs. The physical API of Torc has the capability to read, modify and
write slice-level Xilinx Design Language (XDL) format netlist. This is a powerful
interface for back-end CAD tools development for placement and routing. This work
utilized the physical APIs for error detection insertion and reliability-oriented place-
ment. The architecture APIs pulls in the original wiring and resource information
from non-proprietary vendor source files (XDLRC) and stores them in database ac-
cessible through several APIs. These APIs can be used to understand deeply the
logic and routing architecture of commercial Xilinx FPGAs. Lastly, bitstream APIs
works with the Xilinx bitstream format but to avoid breaching proprietary informa-
tion, frame-level details are not supported. More detailed information of the usage
and the algorithms developed upon the Torc framework will be presented in the next
chapters.
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Chapter 4

Fine-grain Error Detection in
Self-repairing Systems

Reconfigurable systems are gaining an increasing interest in the domain of safety-
critical applications, for example in space and avionic applications. In fact, the
capability of reconfiguring the system during run-time execution and the high com-
putational power of modern FPGAs makes these devices suitable for intensive data
processing tasks. Moreover, such systems must also guarantee the abilities of self-
awareness, self-diagnosis and self-repair in order to cope with errors due to the harsh
conditions typically existing in some environments. In this work we propose a self-
repairing method for partially and dynamically reconfigurable systems applied at
a fine-grain granularity level. Our method is able to recover and correct errors us-
ing the run-time partial reconfiguration capabilities offered by modern SRAM-based
FPGAs. Fault injection campaigns have been executed on a dynamically reconfig-
urable system embedding a number of benchmark circuits. Experimental results
demonstrate that our method achieves full detection of single and multiple errors,
while significantly improving the system availability with respect to traditional error
detection and correction methods.

4.1 Self-repairing systems

A self-repairing system is presented in this chapter consisting of two regions: static
and dynamic. The static region, also called base region, typically consist of a micro-
processor, memory modules and input/output ports, as described in figure 4.1. In
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general, these components are not re-configured and their full functionality is con-
stantly required for implementing the correct operations of the system; for this rea-
son the static region is often hardened using traditional redundancy-based approach,
such as Triple Modular Redundancy (TMR). The static region is also responsible
for the reconfiguration of the modules placed into the reconfigurable regions. On
the contrary, the components in the dynamic region correspond to partially recon-
figurable resources that can be configured in different ways depending on the system
requirements. The main contribution of the this chapter is the development of an
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Figure 4.1. Placement space division into Static and Dynamic Region Reporting
single bit error region, multiple bit error region and the coarse grain error region.

autonomous recovery approach of Partially Reconfigurable Modules (PRM) when
errors are detected inside them. The approach is assigned to the static region pro-
viding effective capabilities of error detection and correction of faults within the
dynamic region. Besides, our approach allows resilience to MEUs since we adopt a
static region protected with fine-grain redundancy approach as described by authors
in [97]. In detail, our solution provides a new fine-grain fault detection mechanism
applied to FPGA resources, since the approach is based on the comparison of Look-
Up Tables (LUTs) outputs by using the logic available to support carry propagation,
which is generally used for fast arithmetic computations and mostly not inferred by
design tools, following the approach preliminary introduced in [98] for fault detec-
tion; in this chapter we extend this idea so that the system is able to also correct
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the identified errors by applying internal reconfiguration. In particular, the pro-
posed method is characterized by the ability of detecting MEUs into the FPGA’s
configuration memory. Our solution is adoptable on all modern SRAM-based FP-
GAs equipped with Internal Configuration Access Port (ICAP) and that is based
on LUT slice architecture. In order to practically prove the effectiveness of the ap-
proach, we developed a complete set of tools for the automatic generation of the
constraints used for the partitioning of the dynamic regions. The developed set of
tools directly acts at the physical level, automatically inserting a carry chain into
the physical net-list and adding comparator check flags into the circuitry; moreover,
the tool is able to cleverly place the different partitions of the dynamic region into
proper sub-regions, thus allowing SEUs and MEUs correction. The proposed ap-
proach drastically improves the solution in [98] which uses the built-in slice carry
chain for error detection only. In particular, the approach in [98] cannot deal with
MEUs, while our approach supports the recovery of any number of faults in each dy-
namic partition. Our approach introduces a minimal area overhead, which is strictly
dependent upon the number of user-defined partitions. On the average, the over-
head introduced by our approach is around 11% with respect to duplication-based
approach since the proposed technique is using far less computational resources if
compared to the standard TMR solution. Furthermore, correction is performed on a
single reconfigurable frame, which is the smallest amount of reconfigurable informa-
tion that can be read or written; therefore, we can achieve the highest availability
limits offered by the current reconfigurable technology.

4.2 The Overall Scheme

The proposed method consists of two flows: one applied to the dynamically reconfig-
urable region for implementing error detection, the other one for instrumenting the
circuit mapped on the FPGA so that it supports the execution of the self-repairing
method against single and multiple-bit errors. A dynamically reconfigurable system,
from the architectural perspective, is partitioned into static and dynamic regions as
illustrated in figure 4.1. The static region consists of a processor with static-RAM,
general purpose IOs, flash memories, and hardware resources for managing the in-
ternal configuration access port connected to the processor local bus. The static
region contains the main processor, which is in charge of controlling the partially
reconfigurable system operational functionalities: therefore, it is very important to
tolerate and recover errors in these modules. Hence, in this chapter we assume that
this module is implemented using Triple Modular Redundancy. By suitably map-
ping the three copies of the circuit elements on the device the static region can be
protected against any single point of failure. From the point of view of the circuit
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architecture, the proposed method is based on the Duplication With Comparison
(DWC) technique applied at two different levels of granularity, herein called Coarse-
grained DWC (C-DWC) and Fine-grained DWC (F-DWC). The C-DWC is applied
for slices that use the carry chain for computations such as fast additions or mul-
tiplications. In this case, the duplication is performed at the module level and the
outputs are compared at the physical level by LUT elements configured to imple-
ment XOR combinational functions. Our approach is able to directly modify the
circuit physical description in order to use the XOR logic function to compare the
module’s outputs. In case of error, the software tools running on the reconfigurable
system partially rewrite the C-DWC region. F-DWC is applied at the place and
route level, by suitably duplicating each LUT function in two copies that are placed
in a single slice using two consecutive LUT positions. The outputs of the two LUTs
are then compared with hardwired physical resources built into the slice in form of
a carry chain by using internal and not programmable resources, such as hardwired
MUXes and XORs. The outputs generated by the XOR functions are connected in
a chain of OR logic functions in order to provide a single error detection flag for
each column. Practically, the F-DWC approach can be adopted by acting at the
Hardware Design Language (HDL) level: the combinational functions are duplicated
and both copies of the circuit LUTs are placed in a single FPGA slice using two
consecutive available LUT positions. Please note that the outputs of any pair of
LUTs pass through the carry chain and at each pair position of the XOR generates
a comparison signal called check flag. Since we are generating a check flag for each
pair of LUTs the number of check flags may drastically increase. This means that
a considerable amount of routing resources could be required by the implementa-
tion of these check flags because they have to be routed to the static region for the
potential detection and correction of errors. Moreover, any such scheme will not
only have a large overhead, but it will also be fruitless because the smallest unit of
reconfiguration is a frame. In order to have a single check flag for each frame we
propose to merge the individual check flags in two different ways. The check flags in
the Single Bit Error (SBE) region are merged through the built in slice carry chain
as shown in figure 4.2 (further details are provided in section 4.3.1). Furthermore,
a whole column of slices are connected by the carry chains to produce a single flag
for each column of slices (see for example flag 3 in the SBE region of figure 4.1). In
this way, we achieve a huge reduction in the number of check flags, but we can only
detect Single Event Upsets (SEUs) in the SBE region because multiple LUT pairs
are connected together by a long chain of XORs and XNORs and thus even number
of errors will go undetected due to the logical configuration of the detector. In the
Multiple Bit Error (MBE) region each pair of LUTs generates a check flag and thus
we have two check flags per slice. The number of check flags can be reduced by
OR-ing some of the flags corresponding to the slices in the same slice column, as
shown in the magnified MBE region in figure 4.3. Although some higher overhead is
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introduced in this way, we have the ability to detect Multiple Event Upsets (MEUs)
in the frames mapped on this region because compared to SBE region, the individual
check flags are not merged along the carry chain passing through multiple XORs.

4.3 Error Detection Method

In order to fully explain our proposal, in this section we will specifically refer to
the architecture of Xilinx Virtex-5 FPGAs. As described in the previous section,
the error detection mechanism implemented in the reconfigurable region is based on
LUT-based checkers and carry chains for propagating the check flags. Please note
that the LUT checkers are only deployed when the carry chain is unavailable of com-
parison purposes. This allows reducing the performances degradation of the circuit
implemented with our method, although in this case the detection mechanism is
implemented at the modular level. In this section, we focus on the method adopted
for the error detection using the carry chains for comparison; a more detailed expla-
nation of both the LUT checkers and the carry chains insertion inside the physical
place and route description of the circuit are given in section 4.5.

4.3.1 Single Bit Error Region

In order to detect single-bit errors, we propose to duplicate each original LUT func-
tion into two identical LUTs. Furthermore, we place the two LUTs in a single FPGA
slice, where we set the Carry Input and the generic AX inputs to 1 and 0, respec-
tively, as illustrated in figure 4.2. Consequently, the hardwired XORCY logic gate
in the bottom of the slice is acting as an inverter, while the MUXCY multiplexer
in the bottom first position is simply acting as a buffer to pass the value of LUT
A. The multiplexer M2 is receiving an inverted (through AMUX 2 BX hardwired
connection) and buffered copy of LUT A output at its 0 and 1 inputs while the
selection line is tied to LUT B (which is the copy of LUT A) thus effectively per-
forming EX-NOR function. The XOR gate named X2 receives LUT A and LUT
B outputs on its inputs. Similarly, LUT C and LUT D can also be connected with
such a scheme by extending the EX-NORs and EX-ORs along the slice. In fact, this
scheme can be extended to an entire clock region covering 20 CLBs using the COUT
and CIN of slices thus generating two flags for the even and odd slice columns of the
same CLB. This convergence strategy can only be applied if the CLB column has no
empty slices. In case the CLB column contains empty slices the dedicated COUT
connection cannot be used to propagate flag signal upwards along the column. For
such a case, a ORing LUT in introduced in the CLB column and placed in available
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empty slice. This will be discussed in greater details in section 4.5.3. It is interesting
to investigate an upper bound on the number of check flags that can be generated
for the most complex design. The flag signal are generated per CLB tile columns
and is directly related to the device rows and columns, for example, for Virtex-5
VLX110T the maximum number of check flags for any design cannot be greater
than 160x8. As the FPGA must contain the control processor the actual number
will be quite less than 1,280 and will determine the GPIO port size that are used by
the controller to detect errors. Surprisingly, now it is possible to pinpoint single bit
upsets in any of the four LUTs in any slice column in a clock region. However, errors
in FFs cannot be directly detected instead they are detected when they propagate to
the next logic levels of LUTs but we still cannot pinpoint the configuration frames
required for correction and thus a larger area has to be reconfigured to deal with
error in flip flops.
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Figure 4.2. Single-Bit Error detection scheme implemented in a single slice

4.3.2 Multiple Bit Error Region

In case a further protection level is needed, our approach is able to provide detection
against multiple-bit errors in a slice column. However, multiple bit errors can only
be detected if the error detecting carry chain is inserted in a specific pattern that we
will mention in this section. Furthermore, the logic connectivity pattern required
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dictates that the LUTs used in this scenario can have 5 inputs or less. Therefore,
all LUTs in design that have number of inputs less than 5 can be designated to this
region. It is interesting to know that a recent survey of designs for Xilinx FPGAs
suggests that 37% of LUTs inferred by the synthesizer are having inputs less than 5.
The scheme implemented in order to achieve multiple-bit error detection is shown in
figure 4.3, where the output of the LUT A is connected to the output O5, while the
output of the LUT B is taken from O6. The two signals O5 and O6 are internally
hardwired to the input of the XOR gate at the second LUT position, which acts as
an error detection logic. Please note that we have to tie up the A6 input of LUT A
because we want to take output from the O5 output. This is achieved by connecting
it to the TIEOFF element. In this way every pair of LUTs in the design generates a
check flag signal, as shown in figure 4.3 (check flag 1 and check flag 2). However, the
number of flags grows linearly with the number of LUTs in the dynamic region, and
so the method becomes unfeasible for large designs. In order to reduce the number
of flags we propose the usage of 2 slices (out of the available 20) for merging the
check flags by OR-ing them. In fact, two levels of OR gates placed in the bottom two
slices of a slice column are used as a flag reduction strategy. As we are producing
two flags for each clock region (one for odd and one for even slices) we can have a
maximum of 72 LUTs (out of 80 LUTs in an even or odd slice column) configured
for computations in any slice column location (even or odd) in a clock region. Thus
the MBE regions require an overhead of 11.11% for flag reduction.
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Figure 4.3. Multiple-Bit Error detection scheme implemented in a single slice
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4.4 The Error Correction Method

The error correction method we propose is based on the assumption that the DUT
Dynamic Regions are physically placed at positions preliminary known at the design
time and that the original configuration memory frames are stored into an FPGA
external memory in such a way that they can be retrieved when an error on the
corresponding flag from the DUT region is signaled. The error signal can be used
to drive the processor interrupt signal: in case of an interrupt from any flag, the
main processor controller responds to the interrupt in the following way. First, it
determines the clock region (in terms of CLB row) and the slice position (even or
odd) the error was triggered by. This is particularly relevant, since the main proces-
sor controller needs to selectively reconfigure the faulty frames of the DUT design
with the correct copies of the corresponding frames that are stored in the outside
memory. Secondly, the clock enabling signals should be deactivated to disable the
propagation of errors to the next stages in the design. This is possible since both
static and dynamic regions have well-defined interfaces with clock enabling registers.
Similarly, the DUT region should also have latched outputs at every stage of the
design. Thirdly, the main processor controller accesses the configuration layer of the
FPGA and reconfigures the faulty region with the golden copy of each frame. Lastly,
the main processor controller enables the clock to re-start the normal operation in
the DUT region involved in the correction.

4.5 CAD Flow

In this section we describe the tool flow we developed in order to insert fine-grain
duplication with comparison using the built-in slice carry chains. The developed
flow is shown in figure 4.4, and consists of two phases applied before MAP and after
MAP process. The pre-map step generates a number of constraints for directed
packing, placement and sites prohibitions while the post-map step inserts the error
detecting carry chains and the convergence logic required to reduce the number of
flag signals. This post-map modification is implemented by modifying the XDL
file which is the Xilinx interface for interacting with the Xilinx CAD flow. This is
a must for researches wanting to develop custom packing, placement and routing
solutions. The tool flow has been developed as a C++-based software environment
making heavy use of boost library [60] and Tools for Open Source Reconfiguration
(TORC) [58].
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Figure 4.4. The developed design flow.

4.5.1 Netlist Extraction

The flow starts by parsing the net-list description of the circuit implemented into
the dynamic region which was duplicated at the Hardware Description Level (HDL).
It is important that both instances of the design should be labeled with inst1 and
inst2 so that all the synthesized elements contains the hierarchical information of
top level instance to which it belongs. However, global reset/clock signals are not
duplicated at the module-level as will be explained in section 4.5.2. After synthesiz-
ing the design a post-synthesis simulation Verilog file is generated using the Xilinx
NETGEN utility. The post-synthesis Verilog file contains the circuit net-list using
the Xilinx primitive cell library elements. The parser module traverses the post-
synthesis Verilog file and extracts the Net-list of the circuits in form of a graph.
Each node of graph is modeled as a structure with a number of fields for example,
functional string, instance name, inputs vector, outputs vector and type of primitive
element (LUT or FF). When a new type of element is encountered on the current
line a new node is dynamically created and all parameter of this node are populated
by parsing the consequent lines. After all the nodes are properly initialized we it-
erated over the nodes of the graph picking up one node’s output and finding it in
other nodes inputs. Wherever, we find it we create a link thus the whole net-list is
created in this manner.
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4.5.2 Logical and Physical Partitioning of DUT

Once the circuit net-list is created in form of a graph, it is necessary to generate user
constraints (UCF) in order to perform the DUT physical space division into regions
and for packing the primitive cells into slices. The information obtained from the
net-list is parsed in a hierarchical manner individuating the couple of LUTs that have
been already duplicated at the HDL level. The hierarchical organization consists
of three categories of components. Firstly, all the components which use MUXs
and XORs are grouped together for modular duplication without carry chain usage.
Secondly, LUTs with less than 5 inputs are grouped together to form multiple error
regions. Thirdly, LUTs with 6 inputs are grouped to form single bit error detection
regions. The division of flip-flops into groups is dependent upon the LUTs to which
it connects and thus each LUT-FF pair is identified and stored in a way that each
FF can be indexed by LUT. Similarly, a LUT-LUT pair is created that for each LUT
used in the design locates the corresponding LUT in other instance. These LUT-
LUT pairs are necessary for fine-grain comparison and need to be packed together
in the same slice. A slice object is modeled to house the packing of LUTs and FFs.
The slice object model is an abstraction of the actual slice on the corresponding
FPGA architectures and considers the key attribute for example the number of
LUTs, FFs and the unique clock and reset signals at the input of the slice. The
clock and reset signals (along with Clock enable, Set/Reset signals) are important
constraints for the application of our method because each slice can use a unique
clock/reset signal that should be used by the FFs residing in the slice. That’s
why the global clock and reset signal were not duplicated due to the architectural
limitation of state-of-the-art FPGA devices. Currently, the approach picks up a
LUT-LUT pair and its corresponding FFs and checks the legality for packing them
in a single slice object and packs them together if the legality constraints are fulfilled.
The legality constraints are that they FFs should use the same clock/reset signal,
although, the global clock/reset signal are unique, however, depending on the type
of computation the circuit is implementing there can be local control signal used ,
for example, an FSM that will have different control signals for each DUT design
instance. As in this work, the synthesizer is not constrained in any manner for
the duplication performed at the HDL level; different duplication strategy applied
at the synthesis level may allow the FSM to use unique control signals. Now that
the graph is fully annotated with the resource division information a constraint
file is generated that uses the Xilinx packing constraints (XBLKNM) for packing
and for forming area groups (AREA GROUP). It is important to note that each
XBLKNM constraint uses a unique slice name by concatenating the region identifier
with an identification number. For example, slices in single bit region uses name like
SBESlice1, SBESlice2 and so on. This naming convention is necessary for forming
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the area groups and also for identification at the XDL level as will be discussed in
section 4.5.3. After the completion of this packing step, each slice is included in an
area group of either SBE region or MBE region depending on the slice name assigned
to it during the packing process. Furthermore, each area group is floor-planned by
selecting a slice range constraint to which it will be mapped. The numbers of slices
required are calculated from the number of graph nodes that falls in a certain group.
For multiple bit error regions, a number of CONFIG PROHIBIT constraints are
generated for each slice tile. These constraints are generated in such manner that
the top two slices of each tile column are left empty. It is important to note that
both the packing and the floor-planning steps have not been optimized in our case
and this can have considerable effects on the circuit operating frequency. Once the
constraints are generated, the translation and mapping processes are executed and
produce the mapping of LUTs copies in the same slice, as illustrated in figures 4.2
and 4.3. The routing and check flag signal insertion are performed in the following
phase.

4.5.3 XDL-Level Manipulations

Once the mapping is performed, the insertion of the carry chain and the definition
of the comparator resources are implemented by modifying the physical place and
route description of the circuit in order to properly use the hardwired combinational
gates. This process is executed in the following distinct steps. The carry chain
insertion step is applied to the slice where carry chain primitives are not used for
fast arithmetic computation. The insertion mechanism of the carry chain is the
same for the single- and multiple-bit error detection scheme; however, they differ in
multiplexer’s settings and wiring details. Each inserted carry chain should have a
different name, as the carry chains can be multiple slice long XDL uses two levels of
identification to differentiate carry chains and its indivisible members. Each carry
chain that spans multiple slices along a column forms a Relatively Placed Macro
(RPM) identified by macro number and individual carry chain number for example
Shape 0:0,0 and Shape 0:0,1 carry two carry chains that belong to RPM Shape 0
and each one identified by its position in the RPM chain. First, the XDL file should
be checked to generate a unique RPM identification name for the next carry chain
to be inserted. As for two different kinds of error detectors are used, single bit
region and multiple bit regions, the flag reduction strategy differs for both cases.
For single bit region, the flags are merged using the dedicated COUT line that run
from a slice to the next slice. Each XDL instance that belong to single bit error
region is augmented with a carry chain each one using a unique name as discussed
previously. Once the carry chains are generated, multiplexer’s settings for single bit
error region is performed according to figure 4.2. Now that each single bit error
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region slice contain carry chain for error detection it is necessary to connect the
carry chains along the column to converge the error flags because at this stage the
number of error detection flags are linearly proportional to the number of slices
used in the single bit error region which is huge and its impractical to route it to the
control processor. As the placement was constrained, in the previous step with a
generated UCF file, however, the placer stills tries to optimize for timing and is not
considering the fact the each slice column should be filled to the maximum extent
possible resulting in a placement such that the single bit region slices columns have
empty slices positioned in the middle of slices that uses carry chain based detectors.
This is a serious problem for the flag convergence because the dedicated COUT
line can only be used if the slices are positioned in consecutive positions above and
below each other. In order to solve this problem, multiple carry chain detectors were
combined using an OR LUT generating a single flag signal per CLB tile column. It
is also interesting to note that for each OR LUT an automatic procedure searches
for an empty slices in the same CLB column and picks up the nearest one in terms
of the slice site distance for the OR LUT placement. OR LUT placement is a
necessary step because for the Virtex-5 FPGA architecture the placement occurs
as a part of the MAP process and should be completed before the PAR routes
the design. In this way, the single bit error region flags are converged resulting
in error detection carry chains of varying lengths. The maximum the length of a
carry chain, the maximum will be the error detection latency as will be discussed
in experimental results section. For multiple bit error regions, the carry chains used
for error detection used OR LUTs in a manner similar to single bit region. However,
the number of flags to be merged is quite large compared to the single bit region as
each slice is generating two flags. Therefore, the slice sites that were prohibited from
usage by the constraints in section 4.5.2 are utilized for the placement of OR LUTs.
However, in some case it is possible that there are some empty slices that are not
utilized by the placer and those can be used for OR LUT based on the metric of close
proximity. The area overhead introduced by the OR LUTs in the design utilizes the
post-placement empty slices and can be reduced if the slice tiles are filled to the
maximum extent possible. However, this situation can cause the routing congestion
and resultantly the routing time will increase considerably. The last phase of the low-
level manipulation consists of inserting nets with the source and sinks added to them.
Nets are added for all the components that have been previously inserted in form
of carry chain based detectors or in form of OR LUTs. The routing implementation
will be performed by Xilinx PAR tool that automatically routes all the nets between
the inserted components and add the precise Pips that will be used for routing. It is
important to note that if the placement is confined too much the router will be facing
congestion problems and it is possible that the router may take a very long time or
in the worst case will be unable to complete the routing of the design. Therefore,
the placement should be such that an optimal balance among the usage of OR LUTs
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for flag convergence and routing congestion is achieved.

4.6 Experimental Results

We implemented the proposed method on a Xilinx Virtex 5 LX110T SRAM-based
FPGA. We designed a dynamically reconfigurable system where a Xilinx Microblaze
processor core is mapped into the static region, while the design under test is mapped
into the dynamic region. Although other controller solutions exist for managing the
reconfiguration (e.g., based on ad-hoc hardware unit), we adopted the Microblaze
processor since it represents one of the state-of-the-art solution for a dynamically
and partially reconfigurable system based on static and dynamic regions. For design
validation and fault injection, the same Microblaze processor is used to apply the
test patterns to the DUT and to read the outputs from the DUT through the GPIO
port. Moreover, another GPIO port connected to the flags stemming from the DUT
region and configured in interrupt mode is responsible for informing the Microblaze
in case of errors. After the bit-stream is downloaded to the FPGA the Microblaze
memory needs to be initialized with a golden copy of the DUT bit-stream by reading
the configuration area of the DUT with the Xilinx hardwired Internal Con-figuration
Access Port (X-HW-ICAP). As the placement of the different regions was made at
design time the Microblaze processor uses that information to build up a bit-stream
database for different error regions, as discussed in section 4.2. For F-DWC re-gions,
the bit-stream is stored in such a way that if an error is detected by a given flag,
the frame can be recalled to reconfigure the affected area. However, the bit-stream
for the C-DWC region is stored as a partial bit-stream by reading with the ICAP
from the start address to the end address. In the following sections, we present
several results mainly related to the ability of quick error detection, localization and
repairing. Furthermore, cost in terms of area overhead and speed is also presented.
We selected a wide range of circuits as benchmarks and proof-of-concept of our
approach. The circuits include some relevant ITC’99 benchmark circuits with var-
ious complexity, two implementations of the Cordic arithmetic processor, a mini
Mips processor, a lightweight 8080 SoC, an RS-Decoder and a DCT core from the
opencores repository.

In Table 4.1, we reported the number of LUTs and FFs of the implemented cir-
cuits. We compared the used resource of our approach with the resources used by the
original circuits implemented without any error detection or mitigation techniques
and with the detection mechanism based on the duplication with comparison us-
ing Double Modular Redundancy (DMR) and detection and mitigation mechanism
based on Triple Modular Redundancy (TMR). Please note that we did not include
the amount of resources related to the static region within the area count since it
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Table 4.1. Characteristics of the implemented circuits

Circuit Original DMR TMR Our Approach
LUTs FFs LUTs FFs LUTs FFs LUTs FFs

B03 39 35 78 69 180 111 85 69
B04 115 67 213 131 449 201 250 131
B05 163 42 326 83 792 135 390 83
B07 98 50 196 99 406 153 18 16
B08 20 21 40 42 89 63 49 42
B09 49 28 98 56 117 84 108 56
B10 37 24 72 47 157 72 80 47
B14 1,161 217 2,322 434 6,417 669 2,552 434
B15 1,900 425 3,480 849 8,358 1,275 4,311 849
Cordic rp 1,024 1,019 2,048 2,038 3,658 3,387 2,329 2,038
Cordic pr 689 690 1,378 1,380 2,259 2,259 1,446 1,380
miniMIPS 3,200 1,883 6,439 3,764 5,649 5,649 6,789 3,764
L80SoC 261 237 473 1,524 726 609 609 473
RS Decoder 4,191 2,801 5,600 18,452 8,403 9,056 9,056 5,620
DCT 1,254 1,935 3,866 5,608 4,755 2,811 2,811 3,866

remains constant for different circuits implemented within the dynamic region. The
resources usage values report that our approach is far better than TMR, since on
the average, TMR requires 3.64 times more hardware resources than the original cir-
cuit, while our approach requires 2.10 times more resources only. If compared with
DMR, our approach requires 10% more resources on the average; however, DMR
cannot correct errors, while our approach corrects errors and reduces the probabil-
ity of single points of failure thanks to the developed fine grain combinational logic
infrastructure. It is important to underline that the area comparison has been per-
formed directly on the basis of LUTs and FFs counts; while if comparison is made
considering the number of FPGA slices, the ratio may by slightly different due to
stringent packing and placement requirements adopted for the fine-grain redundancy
with comparison logic. In particular, slices are used as a route-through and FFs may
be placed in separate slices, since the FFs require different control signals that were
not possible to be packed together with LUTs.

The measurement of the error detection latency is the key factor for making
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proper self-repairing system able to autonomously repair itself obeying real-time
constraints. The results we obtained are illustrated in Table 4.2, where it is shown
the maximum error detection latency for SBE and MBE regions. In detail, the table
reports the length of the carry chain detector, the delay latency with routing and
logic contribution of the SBE region, while the distance from the detector and the
delay latency for the MBE region. It is notable that the SBE regions latency is
more than the MBE regions because all the carry chains in each CLB that resides
in the same column have been connected in a unique CLB column. The analysis
of the obtained data demonstrated that the error detection latency is affected by
two aspects: the routing congestion and the detector location. Where for the SBE
region error detectors the contribution of latency due to logic delay for a fully con-
nected column is around 22.94 ns (almost the 40%) compared to the routing delay
contribution while amounts to 35.53 ns (almost 60%). Detailing the delay analysis,
it is possible to note that the logic delay is proportional across a column of slices,
since the number of carry chain detectors provides a proportional delay contribution.
Vice versa, the routing delay has a higher variability due to the routing congestion
induced by the adjacency of slices making the interconnection tiles less available
for longer routing tracks. This aspect does not only increase the overall latency
but introduces severe constraints on the routing usage in terms of design working
frequency. Two alternatives have been used in order to reduce the routing delay
time. The former one is oriented to relax the placement constraints of the overall
design logic resources thus leaving some empty slices in the SBE regions; this per-
mits placing carry chain flag interconnections only on a single CLB column avoiding
carry chain flag interconnections convergence across two or more slice columns. The
latter solution consists on the usage of LUT’s configured as OR gate in order to
converge flag signals. This introduces a trade-off between the area overhead and the
router completion time. It is worthwhile to mention that although the area overhead
increases, however, the maximum error detection latency decreases. Similarly, the
MBE regions use LUT’s configured as OR gate for the reduction of the intercon-
nection flags. As a result, the error detection latency for MBE region has a logic
delay contribution of 0.19 ns while the routing delay is 2.92 ns which correspond re-
spectively to almost the 6% and 94% of the overall logic delay. These asymmetrical
values are due to the fact that in the MBE region the carry chain detector is one
slice long and the error detection latency directly depends on the placement location
of the OR-LUTs and their distances from the flag generation node. The effectiveness
of the proposed approach concerning the error correction and detection capabilities
have been evaluated through the execution of fault injection campaigns. The exper-
iments have been performed on the Xilinx Virtex-5 LX110T SRAM-based FPGAs
by injecting transient faults into the FPGA’s configuration memory and evaluating
the circuit’s response through the execution of circuit specific workloads. Please
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Table 4.2. Error Detection Latency for carry chain detectors

Circuit SBE Region MBE Region

Length Latency
(nanosecs)

Logic Delay
(nanosecs)

Routing Delay
(nanosecs)

Distance Latency
(nanosecs)

B03 4 8.81 5.73 3.09 4 1.25
B04 8 19.62 9.77 9.85 8 1.52
B05 14 42.61 16.03 26.58 14 2.07
B07 10 22.87 11.67 11.22 10 2.76
B08 3 6.63 4.63 2 2 1.15
B09 2 3.8 3.47 0.33 14 2.82
B10 4 11.98 4.59 7.39 2 1.023
B14 20 55.81 22.93 32.88 18 3.10
B15 20 51.26 22.10 29.16 19 3.42
Cordic rp 0 0 0 0 3 1.99
Cordic pr 0 0 0 0 2 1.85
miniMIPS 20 52.43 22.98 28.46 19 3.99
L80SoC 19 40.50 21.86 18.64 16 2.44
RS decod 20 44.80 22.98 21.82 19 3.86
DCT 13 23.84 14.97 8.86 17 2.99

note that the faulty bitstreams are generated by corrupting the FPGA’s configu-
ration memory bits belonging to the dynamic region, while the static region which
contains the reconfiguration controller, is kept fault free. Table 4.3 shows the fault
injection results, where for each circuit 10,000 Single Event Upsets (SEUs) have
been randomly injected into the whole FPGA configuration memory bits related to
the reconfigurable region. All the circuits have been emulated at 50 MHz and SEUs
are practically injected by downloading the corrupted bitstreams into the FPGA
configuration memory.

In details, the table reports the number of SEUs and MEUs provoking a wrong
answer on the circuit output that following activate the error correction mecha-
nism; while the corrected column reports the number of SEUs and MEUs properly
corrected by our approach. Please note that the MEU effect considered in our ex-
periments always occur in different slice columns involving the modification of two
configuration memory bits. This correspond to the worst case scenario; in fact, cor-
rection of SEUs and MEUs in a single slice columns takes always the same amount
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Table 4.3. Fault injection campaign experimental results

Circuits SEUs MEUs
Wrong Anwer Corrected Wrong Answer Corrected

B03 2,448 2,416 2,944 2,875
B04 584 583 632 621
B05 782 781 942 894
B07 4,762 4,639 5,682 5,434
B08 1,425 1,423 1,704 1,676
B09 1,784 1,776 8,938 8,852
B10 1,903 1,892 5,986 5,940
B14 5,121 5,041 5,443 5,331
B15 6,930 6,883 7,240 7,124
Cordic rp 4,932 4,915 5,230 5,148
Cordic pr 3,142 3,089 3,350 3,268
miniMIPS 8,903 8,895 9,104 8,957
L80SoC 1,238 1,211 1,469 1,429
RS decod 9,236 9,177 9,491 9,379
DCT 5,232 5,173 5,523 5,372

of time, vice versa, errors in different columns require a longer computational time
before to be corrected. The obtained results demonstrate the efficiency of our ap-
proach, which is able to correct more than the 98% of the injected errors provoking
wrong answers for all the considered circuits.

We also measured the recovery time as presented in Table 4.4 we reported the
worst recovery time measured for all the circuits during the execution of the fault
injection campaigns. As it is possible to notice, the advantage provided by our
approach is extremely large on all the considered circuits. We also measured the
average recovery time for the tested circuits which corresponds to 76.3 microseconds
and 158.9 microseconds for SEUs and MEUs respectively. Comparing these recovery
times with the ones required by redundancy approaches such as TMR and DMR
using active configuration memory scrubbing of all the reconfigurable region area,
which is about 1.2 milliseconds; our approach has an improvement of more than one
order of magnitude.

We evaluated the impact on the circuit maximal working frequency on all the
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Table 4.4. Recovery Time comparison (worst case)

Circuit DMR
[µsecs]

TMR
[µsecs]

Our
Approach [µsecs]

B03 383.7 1,033.2 119.3
B04 678.9 1,239.8 237.7
B05 1,269.4 3,070.1 238.2
B07 531.4 1,594.1 238.9
B08 88.6 856.1 119.2
B09 206.6 501.8 120.9
B10 501.8 974.2 237.2
B14 2,922.5 5,667.8 829.7
B15 5,077.4 8,796.9 2,010.8
Cordic rp 3,483.4 4,693.7 120.1
Cordic pr 1,416.9 4,073.8 119.9
miniMIPS 8,029.4 11,335.7 2,011.4
L80SoC 2,154.9 2,892.9 474.8
RS decoder 11,040.5 17,062.6 2,129.3
DCT 4,250.9 19,128.9 2,364.6

implemented benchmark circuits comparing our approach with the DMR and TMR
redundancy based techniques. The results are illustrated in figure 4.5 which is re-
porting the maximum clock period of our benchmark set comparing among different
redundancy based approaches. As it is possible to notice, our approach has a reason-
able behavior for medium complexity circuit, while it has a penalization up to the
22% of the nominal working frequency for larger circuits. This phenomenon is due to
the unconventional block placement of logic resources on slice columns for different
circuit regions. This aspect affects the timing of the circuit because our technique
does not include an optimal floorplan implementation of the different circuit region.
The maximal circuit clock period can be further optimized using floorplan oriented
placement algorithms by acting the fine-grain logic packing. These logic resources
can be packed per slice columns in order to tightly place the fine grain duplication
with comparison LUTs resources in the optimal way.
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Figure 4.5. Clock period comparison of the implemented circuits using different
error detection and correction approaches.
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Chapter 5

Dynamically Reconfigurable Triple
Modualar Redundancy

The rapid adoption of FPGA-based systems in space and avionics demands de-
pendability rules from the design to the layout phases to protect against radiation
effects. Triple Modular Redundancy is a widely used fault tolerance methodology
to protect circuits against radiation-induced Single Event Upsets implemented on
SRAM-based FPGAs. The accumulation of SEUs in the configuration memory can
cause the TMR replicas to fail, requiring a periodic write-back of the configura-
tion bit-stream. The associated system downtime due to scrubbing and the prob-
ability of simultaneous failures of two TMR domains are increasing with growing
device densities. We propose a methodology to reduce the recovery time of TMR
circuits with increased resilience to Cross-Domain Errors. Our methodology con-
sists of an automated tool-flow for fine-grain error detection, error flags convergence
and non-overlapping domain placement. The fine-grain error detection logic iden-
tifies the faulty domain using gate-level functions while the error flag convergence
logic reduces the overwhelming number of flag signals. The non-overlapping place-
ment enables selective domain reconfiguration and greatly reduces the number of
Cross-Domain Errors. Our results demonstrate an evident reduction of the recovery
time due to fast error detection time and selective partial reconfiguration of faulty
domains. Moreover, the methodology drastically reduces Cross-Domain Errors in
Look-Up Tables and routing resources. The improvements in recovery time and
fault tolerance are achieved at an area overhead of a single LUT per majority voter
in TMR circuits
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5.1 Cross-Domains Errors and Scrub Time

In order to avoid single point of failures in circuits implemented on SRAM-based
FPGAs, Triple Modular Redundancy (TMR) is the main methodology selected by
designers [64]. The logical fault masking ability of TMR enables the systems to
operate fault-free if an SEU creates a bit flip in one of the TMR domains. However,
the persistence of SEU effects in the configuration memory can result in failures of
two TMR domains and thus the fault masking can break. This requires periodic
(e.g., blind scrubbing) [73] or selective (e.g., single frame read-back and correc-
tion [99]) reconfiguration of the bit-stream to stop the accumulation of SEUs in the
configuration memory. While the growing device densities enable the implemen-
tation of more functionality per unit area, it has two important consequences for
TMR circuits implemented on SRAMbased FPGAs. First, the close proximity of
SRAM-cells increases the probability of a single particle to effect two neighboring
cells. These single event multiple bit upsets can become critical for TMR circuits
when the two neighboring cells are storing the configuration bits of two different
TMR domains. These multiple bit upset increases Cross-Domain Errors (CDEs)
that result in TMR failures [66]. Second, the growing size of configuration memories
and the unimproved speeds of reconfiguration interfaces are causing the reconfigu-
ration times to increase with each new generation of FPGAs. For example, the 28
nm Virtex-7 FPGA has a configuration time of 125 milliseconds [54]. This system
downtime can be unaffordable for safety-critical applications with strict real-time
requirements. Nowadays, FPGA implementation tools usually tend to optimize the
overall circuit performances, however, such kind of optimizations have an opposite
effect on dependability of circuits. Since, logic and routing resources tend to have
a high congestion, particularly in placing voting resources in the same Configurable
Logic Block (CLB), the resultant placement increases the probability of TMR fail-
ures. A conservative placement of each domain to separate physical area on the
chip may ensure that logic and routing elements from different TMR domains do
not increase the TMR failure probability. A preliminary work presented in [100]
instruments each TMR domain with error detection logic for errant domain identifi-
cation and leverages the non-overlapping domain placement for selective reconfigu-
ration. This chapter improves the state-of-the-art techniques with several novelties.
The former, consists in an error detection logic introduced within the TMR voting
structure. In comparison with the traditional minority-voter based implementation,
the proposed method uses less routing segments. This reduces the probability of
CDEs in the detection circuitry. Secondly, a new strategy for the individuation of
the error location within the FPGA architecture is proposed. The developed scheme
adopts carry-chain resources available in each CLB slice improving the SEU detec-
tion capability especially considering failures into the FPGAs configuration memory.
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The latter contribution of the chapter is a non-intrusive net-list algorithm analyzer
that allows the evaluation of CDEs at the early design phase incorporating static
analyzer methodologies [101]. The proposed methodology has been evaluated on
different benchmark circuits including microprocessor cores such as the MiniMIPS
and Leon-II processors. The experimental results demonstrate a huge reduction in
recovery times with respect to previously adopted techniques such as scrubbing. The
proposed methodology completely eliminates CDEs in LUTs, while greatly reduc-
ing them in the routing interconnects. Moreover, the proposed methodology incurs
an area overhead of one LUT per internal majority voter. For all the benchmark
circuits that we considered in this chapter, the error detection logic did not alter
the critical path of the circuits. Interestingly, the custom floor-planning of TMR
domains enabled the placer to optimize the wire-length more rigorously resulting in
performance improvements in some cases.

5.2 TMR architecture and Layout

The goal of this section is to present a new TMR fault-tolerance methodology that
reduces the recovery time and the number of CDEs affecting circuits implemented on
SRAM-based FPGAs. The methodology mainly consists of architectural and layout
level changes introduced in the Xilinx TMR architecture [64].The architectural-level
changes include the insertion of error detection and error flag convergence logic while
the layout-level changes consist of non-overlapping domain placement. Error detec-
tors and flag convergence logic are inserted at the granularity of TMR domains. The
error detection logic uses gate-level functions for comparison, resulting, in a large
number of error flags for each domain. As it is fruitless to identify an errant domain
with more than one error flags, the flag convergence logic connects together all the
flags from a single domain, generating a unique flag per TMR domain. A novel flag
convergence logic is introduced in this section to make the realization of fine-grain
error detection feasible for TMR circuits.

A fine-grain error detection logic based on logic gates is used to identify faults
in a TMR domain. The implementation and insertion of error detection logic in
TMR circuits can be accomplished in three different ways mainly based on minority
voter and equivalence function shown in figure 5.1. The minority voter has three
input signals consisting of a primary and two secondary inputs. The minority voter
circuit generates a logic 0 value on the output when the primary agrees with at
least one of the secondary inputs otherwise the result is a logic 1 value [64]. Thus,
the output of minority voter can be used as an error flag signal. In figure 5.1a, the
minority voter is fed by the outputs of majority voters. In case of a fault in one
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Figure 5.1. Gate-level Error Detection Circuits for TMR Architecture

of the majority voters, the corresponding minority voter will flag an error condition
and will disable the propagation of error to the down-stream logic by controlling
the select line of the multiplexer. The multiplexer receives inputs from the primary
domain and one of the secondary domains. However, a fault in any resource before
the majority voter will be masked from reaching the minority voter and it cannot be
detected. In 5.1b, the minority voter is placed on the signals that feed the majority
voters. In this way, the majority voter will mask faults while the minority voter will
detect faults. This type of detector has the ability to detect faults in the resources
before the majority voters but a fault in majority voter itself cannot be detected
using this method. As the minority voter based detectors require input signals from
three different domains of TMR, it is subject to the same reliability consideration
during the placement as the majority voter. Furthermore, their usage can lead to
routing congestion and error un-detection if they are placed in the same CLB with
the majority voters. Considering the propagation of a fault from a domain in a
given partition to the next, the majority voters will mask the fault. Similarly, if
the next partition is the output stage of the TMR circuit, the minority voters will
disable the output to avoid signal contention on the output package pins of the
FPGA. Therefore, the steering logic, implemented as multiplexer in minority voter
based detectors, can be removed without affecting the functionality of the circuit
while the repairing procedure is carried out. To overcome the limitations of minority
voting based error detectors, this chapter adopts an XNOR based error detector as
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illustrated in figure 5.1c As can be noted from the figure, the XNOR gate is fed
by the majority voter and the primary signal that feeds that majority voter. The
output of XNOR gate produces a logic 1 value when both the inputs are the same.
A fault affecting the logic module before the majority voter or a fault in the majority
voter itself will result in a logic 0 value. Therefore, this circuit combines the error
detection capabilities of the individual minority voter based detectors. Moreover,
as compared to the minority voter based detectors, XNOR detector will be more
resilient to routing errors because it receives inputs from the same domain logic. As
you can notice from the scheme illustrated in figure 5.1, compared to the minority
voter based detectors it uses less number of inputs, thus in a highly congested design
this saving can be significant in terms of the routability and congestion avoidance.

5.2.1 Flag Convergence Logic

The use of fine-grain error detection logic generates a large number of error flags
for each TMR domain. As this chapter tends to detect errors at the granularity of
TMR domains, more than one error flag emerging from each TMR domain is not
useful. The purpose of flag convergence logic is to connect them together to have
a unique flag per TMR domain. This is achieved by using the built in-slice carry-
chains available of fast arithmetic computations in a novel way. As a large number of
carry-chains available in each CLB slice on modern FPGAs remains unused because
the application at-hand does not require it or because the CAD tools could not
infer them, they can be exploited for certain applications [50] [102]. The insertion
of error detection and flag convergence logic in a TMR domain is illustrated with a
placement-level view in figure 5.2 where SLICE 1 contains the majority voters while
SLICE 2 contains the error detection and flag convergence logic. The placement
of same domain voters is a mandatory constrain for our methodology. It should be
noted that modern FPGAs provide local power supply and ground located near each
slice column in the form of the TIEOFF elements, making it possible to connect the
inputs of the hardwired multiplexer in the carry-chain to the fixed logic values like
VCC and GND. These elements can be configured to VCC or GND by modifying
the physical circuit description in the post-map net-list. Although figure 5.2 shows
the flag reduction for four XNORs, this method can be extended to connect multiple
slices using the dedicated carry-wires [103]. The usage of carry-wires to connect the
hardwired carry-chain resources makes the detectors resilient to errors in the detector
itself. Although, the proposed solution efficiently detects error in a TMR domain
with a unique flag, however, due to the propagation delay along the carry-chain, the
method has associated error detection latency. The error detection latency depends
upon the number of majority voters at the boundary of a TMR domain in each
partition. The formation of partition depends upon the nature of computations that
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Figure 5.2. A device-level view of the insertion of error detection and flag
convergence logic in domain

the circuit implements causing a considerable variance in the size. Consequently,
the size of domain within the same partition is constant but it can vary when we
move to other partitions. Therefore, the detector length and error detection latency
varies in the same TMR circuits for domains of different partitions. This chapter
does not optimize the trade-off between the detector length and the number of error
flags; instead the goal is to reduce the number of error flags to the minimum possible
for every domain.

5.2.2 Non-Overlapping Domain Placement

The non-overlapping domain placement is the layout of TMR domains to separate
and non-overlapping areas on chip. As the current CAD tools from the vendors are
optimized for timing, the stringent requirements on the timing closure may lead to
place elements from different domains in the same slice. This results in a critical
voter placement scenario as shown in figure 5.3a. It can be noted that the voters
belonging to the same signal group, Voter 1, but different domains are placed in the
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Figure 5.3. Effects of placement on cross-domain errors

same CLB slice. Each domain is represented with a different color. The correspond-
ing critical voter bitmap is shown in figure 5.3b, where 1, 2 and 3 represents the
configuration bit for the corresponding LUTs. The configuration bit 0 means that
the bit is un-used. The criticality of some of the neighboring bits, responsible for
the configuration of two different TMR domains is shown with overlapped squares
in figure 5.3b. The close proximity of bit-stream frames in this scenario results in a
large number of CDEs in logic as well as in routing. In particular, the interconnect
tile contains nine nets from three different domains that feeds combination logic from
three different domains. One example of a CDE-aware voter placement is shown in
figure 5.3c. where the voters from different signal groups, denoted by Voter 1, Voter
2 and Voter 3, but belonging to the same domain, shown with same color, are packed
together in a CLB slice. The corresponding CDE-aware bitmap in figure 5.3d, which
follows the same convention, demonstrates a more reliable situation. It can be noted
that the number of CDEs in the configuration frames of CLB tile in this case are
zero. The constraints on placement not only guarantee that voters are placed in
CDE-aware manner but it also places all other logic elements separately from other
domain elements. Consequently, most of the routing interconnection reside inside
the boundaries of a placed domain and the routing CDEs considerably decreases as
well. As each of the TMR domains is already instrumented with logic that identifies

63



5 – Dynamically Reconfigurable Triple Modualar Redundancy

the errant domain, the non-overlapping placement can be used to correct the faulty
domain without disturbing the real-time operation of the circuit. This is achievable
by exploiting the Dynamic Partial Reconfiguration (DPR) capabilities of modern
SRAM-based FPGAs. Therefore, the non-overlapping domains placement accounts
for the dramatic decrease in the reconfiguration times of TMR circuits using partial
reconfiguration of a faulty domain. The detailed explanation of the implementation
of placement, for commercial FPGAs, is presented in the next section.

5.3 XDL-level CAD Flows

This section presents a physical-level CAD flow for implementing the proposed TMR
architecture and layout methodology as propose in figure 5.2. The physical-level al-
gorithm inserts the error detection and flag convergence logic in the mapped design
at the level of Xilinx Design Language (XDL). The detailed flow is illustrated in fig-
ure 5.4. The physical-level flow is based upon the modification of the mapped TMR
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Figure 5.4. The Proposed Physical-level Flow

circuits to the FPGA architecture. The mapping process packs the design LUTs
and FFs into slices and assigns them physical locations on the FPGA fabric. The
physical flow starts from the mapped design and applies the proposed architectural
and layout-level changes presented in figure 5.4. First, a re-mapping of the TMR
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circuit with packing constraints is performed to avoid logic elements from different
domains to be placed in the same CLB slice. This is followed by insertion of the error
detection and flag convergence logic section 5.3.1 and finally the custom placement
section 5.3.2 algorithm performs the non-overlapping domain placement.

Algorithm 5.1 Physical-level Manipulator
Input: Voters list file , XDL file
Output: Modified XDL file with error detection and reduction logic

1: // **************** Initialization Phase ***********************
2: PartitionDomainMap[V oter] = extract partition domain(V oter);
3: SliceLutMap[V oter] = extract sliceP tr lutP tr(V oter);
4: V oterNetsMap[V oter] = extract inputs for XNOR(V oter);
5: // **************** XNOR LUT Creation Phase ***************
6: foreach Voter v in VoterNetsMap do
7: XNOR inputs = V oterNetsMap[v];
8: NewXNORLUTObjtMap[v] = XNORLUTObjts(XNOR inputs);
9: end foreach

10: // ************ Slices and Carry-Chains Insertion **************
11: // Notation: p “partition” and d “domain”
12: foreach voters group with same “p,d” do
13: XNORs cluster = NewXNORLUTObjectMap[voters group];
14: NewSliceInstace = CreateNewSliceInstance(XNORs cluster);
15: InsertCarryChain(NewSliceInstance);
16: NewSlicesMap.insert(NewSliceInstance);
17: Connect2PreviousSliceinNewSliceMap(NewSliceInstance);
18: if XNORs cluster contains last voter in current “p,d” then
19: flagNet = extract flagNet from slice(NewSliceInstance);
20: NewNetName = extract name with partition domain(flagNet);
21: XDLNet = CreateNewXDLNet(NewNetName);
22: XDLNet.source(flagNet);
23: XDLNetMap.insert(XDLNet);
24: end if
25: end foreach
26: // *********** Controller Connection ************************
27: foreach XDLNet in XDLNetMap do
28: XDLNet.target(ReturnReconfigurationControllerPort());
29: end foreach

The preliminary phase of the flow consists of creating a Directed Acyclic Graph
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(DAG) of the TMR circuit by parsing the post-mapped simulation Verilog file (uti-
lizing [60]). The nodes of the graph are modeled as an object with a number of
fields such as functional string, instance name, inputs nets, output nets, type of
primitive element (LUT or FF) and the corresponding domain and partition. After
the net-list is created, each node should be labeled with the corresponding domain,
partition and signal group. It should be noted that each node of the graph has a
name containing a string referred to as TR0, TR1 and TR2 for the corresponding
domain; however, in order to find partitions, majority voters should be identified in
the circuit net-list because majority voters are located at the boundary of partitions.
Majority voters are identified with the functional strings and three inputs each one
from different domains. Furthermore, partitions are created starting from the cir-
cuits primary output pins and traversing the graph in Breadth First Search (BFS)
manner towards the circuit primary inputs. Starting from a boundary of majority
voters, a unique label ID for the partitions is assigned to all the elements of the
graph until the next majority voter boundary is encountered. The next majority
voter boundary will be assigned an incremented label ID and the partition label ID
will be propagated in a similar manner as before. During the process of identifica-
tion of partitions, signal groups are also formed by finding majority voter triplets
which receives the same nets as inputs. It should be noted that the signal group ID
is assigned in a manner that they increment linearly in the same partition but are
set to zero and incremented again for the next partition. Once this process finishes,
all the nodes of the graph will have the corresponding partition and signal group
assigned. This information is mandatory for generating the circuit profile which is a
statistics of the division of elements in domains, partitions and signal groups. The
circuit profiler is used to identify the slices which are in packing violations using
the criteria that all the LUT/FFs in a slice are related to the same domain. Once
the elements violating the dependability rules are identified, a new constraint file is
generated using the packing constraints [104] and fed to the mapper to generate a
mapped design. This mapped design will drive the subsequent phases of the flow by
identifying the insertion locations for error detection and flag convergence logic.

5.3.1 Error Detection and Flag aggregation

A physical-level tool was developed for inserting error detection and flag convergence
logic in the slice-level FPGA design net-list. This tool is based upon the software
primitives defined in [58]. The developed physical-level manipulator presented in
Algorithm 5.1 requires two input files. The former, a voters list file generated by
the circuit profiler which has the partition, domain and signal group information for
every majority voter in the design. The latter, a physical-level file that describes
the mapped design constrained as presented in section ??. During the initialization
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phase, the voters list file is read and the corresponding domain and partition for
each voter is extracted and stored in PartitionDomainMap. Using the names of
each voter, the corresponding slice and LUT pointers are extracted and stored in
a SliceLUTMap. After identifying the voters in the slice-level net-list, the nets
that will feed the XNOR gates need to be identified. For each voter, the nets on
the primary inputs and outputs of the majority voters are extracted and stored in
a VoterNetsMap data-structure. It is worth mentioning that as the physical-level
description is a slice-level net-list while the error detection logic is in form of LUTs,
therefore, it needs to be packed together into slices. This is achieved by creating
abstract LUTs objects and connecting them to every voter in the VoterNetsMap.
In order to pack these created LUT objects, the slice and carry-chain insertion
phase combines from the same domain in a partition four XNOR LUTs into a newly
created slice instance. A carry-chain object is then inserted into the newly created
slice instance and is connected to the previous slice in the same domain and partition
pair. This process of interleaving the chains continues until all the LUT objects of
a domain in a partition are connected. The insertion of error detection logic and
flag signal in the post-map net-list follows a specific naming convention, identifying
each flag with its corresponding domain and partition. When all the LUT objects
of a certain domain are connected, the output from the final carry-chain is the flag
signal. A new net is created at this point and the output of the carry-chain is added
as a source. The created nets are stored in XDLNetsMap for all the partitions and
domains. In the controller connection phase, for every flag net in the XDLNetsMap,
a target port on the reconfiguration controller is specified. The target port of a flag
signal can be an external or internal reconfiguration controller. In case of external
controller the destination is an IOB site connecting to a PAD, while in case of
internal reconfiguration controller the destination can be a port of a processor or
input of a hardware reconfiguration manager. It is important to note that we have
added new nets in the mapped design; therefore, it is possible to carry out the
routing phase using the commercial place and route tool.

5.3.2 Placement

The independent non-overlapping placement for domains is carried out on the physical-
level net-list, which already packed together LUTs and FFs into slices. The physical-
level placer which uses a simulated annealing algorithm [58] modified for indepen-
dent placement of domains in different physical areas as presented in the Algo-
rithm 5.2. As a pre-processing step, the physical-level description file is analyzed
to extract a resource vector representing the computational nodes that will be re-
quired for each domain in every partition. An area range on the chip is selected
for each resource vector that can house it. More formally, the placement problem
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formulation can be laid out in the following manner. Given a TMR partition set
represented by P={p1,p2,...,pn} where each partition pi contains a 3-tuple of do-
mains D={d1,d2,d3}. Let for each domain dj belonging to partition pi denoted by
di,j a 3-tuple rvi,j={nclb,nbram,ndsp} represents a resource vector. Moreover, a set of
resource vectors RV={rv1,1,rv1,2,rv1,3,....., rvn,1,rvn,2,rvn,3} represents the resource
requirement for all the partitions and domains. Similarly, a rectangular region de-
noted by rri,j is the corresponding area on the FPGA that satisfies the resource
vector rvi,j for a domain di,j. Each rectangular region is a 4-tuple {x0,y0,x1,y1}
where the bottom left corner is represented by (x0,y0) and the top right corner is
represented by (x1,y1). The floorplan for the whole design can be represented by
RR={rr1,1,rr1,2,rr1,3,rrn,3} which is a vector of rectangular regions on the FPGA fab-
ric. Moreover, PL={P1,1,P1,2,P1,3,Pn,3} is the random initial placement of all the
domains according to the selected floor-plan. The detailed placement algorithm is
shown in the following XDL-level simulated annealing placer.

Algorithm 5.2 Simulated-annealing based physical-level placer
Input: Unplaced XDL file
Output: Placed XDL file

1: // **************** Initialization Phase ***********************
2: RV {rv(1,1), rv(1,2), rv(1,3), . . . , rv(n,3)} = extract resource vector(DAGTMR);
3: RR{rr(1,1), rr(1,2), rr(1,3), . . . , rr(n,3)} = floorplan area on chip(RV );
4: PL{pl(1,1), pl(1,2), pl(1,2), . . . , pl(n,3)} = random initial placement(RV,RR);
5: // ********** Simulated annealing engine ******************
6: foreach pl(i,j) belonging to PL do
7: T = Initial Temperature
8: while (T > FinalTemperature) do
9: pl(i, j)new = swap two randomly selected elements(pl(i, j));

10: 4C = Cost(pl(i, j)new)− Cost(pl(i, j));
11: if (4C < 0) then
12: pl(i, j)) = pl(i, j)new;
13: elseIf PickFromUniformRandomDistof(0,1) < exp(−4 C/T )
14: pl(i, j)) = pl(i, j)new;
15: end if
16: T = update(T );
17: end while
18: end foreach

In the initialization phase, the TMRs DAG is traversed to divide the logic re-
sources into the corresponding domains and partitions. The information extracted
from the circuit profiler phase can also be used to locate the LUTs/FFs according
to domains and partitions. Based on the required resource a feasible area for each
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domain is selected. It should be noted the floor-planning step is not optimized in
any way. This is followed by an initial random placement of domains according to
the selected floor-plan. The simulated annealing algorithm starts by initializing the
temperature T to a very large value. For each domain, in each iteration, two ran-
domly selected logic elements are swapped to check if the half-perimeter wire-length
decrease. Each good move is accepted, however, a bad move can also be selected
according to a probability. The probability of accepting a bad move is high in the
beginning to enable the algorithm to avoid local minima but decreases with time for
convergence towards global minima. The physical-level placement algorithm com-
bined with the un-optimized packing results in a decreased performance for this flow
which can be vastly improved by the non-intrusive semi-custom flow presented in
the EDIF-based flow in the following section.

5.4 EDIF-level CAD Flows

The net-list described in EDIF grammar is designed with powerful expressive ca-
pabilities for all the levels of abstractions related to the electronic design and au-
tomation of circuits and systems. It is the industry wide standard for interchanging
designs from net-list description to layout phase. Therefore, an alternative net-list
based CAD flow is developed to automatically harden circuits according to our pro-
posed methodology to show viability for other vendors. The net-list level CAD flow
(based upon [58]) is shown in figure 5.5. The flow starts from the triplicated net-list
generated by the TMR tool and applies several modifications including hierarchy
formation, error detection and flag convergence logic insertion, floor-planning and
placing. The rest of the details are in the following sub-sections.

5.4.1 Flat to hierarchical Netlist Conversion

The input to the hierarchy formation block is a triplicated net-list containing in-
stances from the macro block synthesis library containing cells that are used by
TMR tool for hardening the circuits [64]. The functionality of this block is like the
circuit profiler block from section 5.3. Like the circuit profiler block the purpose is
to label each element with a corresponding domain and partition. The net-list uses
elements from a library that have special cells for voter structures and the output
buffer elements. In contrast to the post-map simulation Verilog file used in section
5.3, it is easy to identify them and divide the circuit into partitions. In a similar
fashion to the circuit profiler, a BFS algorithm starting from the circuit primary
output towards the circuit primary inputs labels each element with a corresponding
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Figure 5.5. The Proposed Netlist-level Flow

domains and partitions. The information extraction from the profiling is used to
convert the flat net-list generated by the TMR tool into a domain-level hierarchical
net-list. In order to achieve this task, each logic element from every domain and
partition is annotated with the corresponding partition and domain. The instances
of each cell are renamed by including it in a domain and partition hierarchy. This
kind of hierarchy formation is important for the non-overlapping domain placement
which is a central theme of this chapter. The hierarchical net-list is used for con-
straining the floor-planning and placement using commercial tool-chain and will be
in described in section 5.4.3.

5.4.2 Error Detection and Flag Convergence Logic Insertion

The physical-level description file used in section 5.3.1 is a slice level circuit descrip-
tion, which already packed LUT/FFs and carry-chains and assigns them physical
locations on the FPGA. However, the net-list level flow uses a cell-level net-list uti-
lizing basic elements that comprises slices. Therefore, it is possible to insert the
gate-level detectors directly as LUTs and connect them together using instances of
carry-chain mux cells. The developed Net-list Manipulator Algorithm 5.3 shows the
implementation details for the insertion of error detection and flag convergence logic
as illustrated in figure 5.2. In the XNOR gate insertion phase, a new LUT instance
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Algorithm 5.3 Netlist Manipulator
Input: EDIF Netlist file
Output: Modified EDIF file

1: // ******************* XNOR gate insertion *************************
2: foreach voter “v” which is not an output voter do
3: [primary net, voter out net] = getPrimaryNetandOutputNet(v);
4: XNORMap[v] = InsertXNORInstance(primary net, voter out net);
5: end foreach
6: // ******************* flag convergence logic ************************
7: foreach partition “p” belonging to TMR partitions do
8: foreach domain “d” belonging to partition “p” do
9: foreach XNOR gate “x” in XNORMap do

10: if domain[x] == d && partition[x] == p then
11: if first element in the chain then
12: // Implement MUXCY “M1” in Fig 5.2
13: Y = InsertMuxCyInstance(GND, output(x), V CC);
14: else
15: Y = InsertMuxCyInstance(GND, output(x), prv O);
16: end if
17: prv O = output(Y );
18: if last element in the chain then
19: FlagNets.insert(prv O);
20: end if
21: end if
22: end foreach
23: end foreach
24: end foreach
25: // ****************** Adding Top-Level EDIF flag Ports ****************
26: FlagPort = CreateTopLevelEDIFPort(FlagNets.size());
27: foreach flag belonging to FlagNets do
28: connectflag2portindex(flag, port, index);
29: incrementindex;
30: end foreach
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is created for the XNOR gate. For each voter, the primary input net and the voter
output nets are extracted and are connected to the input of created XNOR LUT ob-
ject. All the created XNORs are stored in a map data-structure XNORMap indexed
by the voter instance. It should be noted that the insertion of XNOR gates follows a
naming convention that labels them according to the corresponding voters partition
and domain. The output from the last XNOR gate is stored in the FlagNets vector.
In the last phase of top-level port creation, an EDIF vector port is created equal to
the size of FlagNets. Each of the flag net is connected to a unique bit index of the
vector port. This completes the Netlist manipulation algorithm. This methodology
is completely compatible with the commercial tool-chain and can be easily adopted
for external or internal reconfiguration controller.

5.4.3 Floorplanning and Placement

The modified hierarchical net-list is used for floorplanning and placement using com-
mercial tools. The floor-planning and placement tools are directed using constraints
described in [104] to respect the non-overlapping domain placement required for im-
proving the dependability and recovery time. These constraints are specified for each
partition and domain in the design. This helps the floor-planning tool to correctly
recognize the hierarchy and extracts the corresponding modules from it. Then, each
module is manually floorplanned by selecting a feasible rectangular region on the
FPGA fabric. It is also important that during the floor-planning process, the re-
source requirements for each domain should be satisfied. The use of special resource
type like hardwired processors and memories should also be planned accordingly for
each domain. For very large designs that may require a large percentage of the device
resources, the use of very long detectors can result in infeasible floor-planning, which
can be elevated by increasing the number of flag signals per domain. The completed
floor-planning information is added as new constraints into the previously created
constraint file which is then used by the placer. The placed design is then routed
using the commercial router. The usage of commercial tools for placing the design in
the net-list level flow as compared to custom placer in the physical-level flow, results
in better performance as presented in the following experimental results section.

5.5 Results and Discussions

To evaluate the proposed approach, the whole system was implemented for Xilinx
Virtex-5 LX110T FPGA. A number of test-bench circuits from the processors cate-
gory of OpenCores [105] repository were used for experiments. All the circuits were
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hardened using the X-TMR tool and modified according to the methodology pre-
sented in section 5.3 and 5.4. The following sub-sections emphasize the main results
comparing Xilinx TMR with minority-voter [100] and XNOR detectors based TMR
methodologies.

The circuit profile statistics is the division of resource in the TMR circuits ac-
cording to partitions as shown in Table 5.1. Partitions are formed by the TMR
tools according to the nature of computations the circuit implements. Majority vot-
ers in the circuit mark the boundary of TMR partitions. In general, the greater the
number of feedback registers in design the more will be the partitions formed. It
is important to note that there is a considerable variance among the sizes of TMR
partitions. The number of signal groups refers to the triplets of voters in the design
and depends upon the number of primary outputs of the circuit. The number of
LUTs and FFs shown here is the sum of all the resources that are spread in the all the
TMR partitions. Table 5.1 also shows the special type of resources in form of DSPs
and BRAMs that are required by each circuit. The circuit profile statistics drives
the variance in area overhead of the proposed methodology and will be explained in
more details latter in this section. The recovery time comparison of the proposed

Table 5.1. Circuit Profiling Results
Circuit Partitions Signal Groups LUTs FFs DSPs BRAMs
RISC5x 3 192 1,805 495 0 0
CORDICR2P 1 40 4,311 3,387 0 0
CORDICP2R 1 32 2,890 2,259 0 0
MINIMIPS 3 528 14,490 5,649 12 0
LEON II 4 748 32,290 8,046 3 39
L80SOC 10 137 1,548 726 0 6
HP16 2 134 3,533 876 0 0
RSDEC 5 376 3,919 2,130 0 12
FPU 2 136 26,702 14,727 36 0
DCT 3 40 6,576 4,755 0 126

approach with the standard X-TMR is presented in Table 5.2. The detector length
expressed in terms of CLBs is the length of the flag convergence logic implemented
with cascaded carry-chains along a column of CLBs. It directly depends upon the
number of majority voters at the boundary of a partition. The detector length re-
ported in Table 5.2 is for the partition with maximum number of majority voters
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at the boundary. Nevertheless, for other partitions, the detector length and corre-
sponding delay can be less than those maximum values shown in Table 5.2. The
detector delay is the corresponding maximum delay. It is interesting to note that
the delay of the longest detector of 192 CLBs, for LEON II, is 27.625 ns. Consider
that the device we used in these experiments has 160 CLBs from top to bottom
along the CLB column. This means that even detectors which span more than one
device resource columns have extremely fast error detection times. This is due to the
dedicated communication channel connecting the CLBs along a column, especially
designed for fast arithmetic additions. However, such long detector lengths have to
be floorplanned by partitioning the chip vertically to accommodate the design con-
straints imposed by our methodology. The recovery time of XNOR based detector
is the sum of error detection latency and the reconfiguration time. The comparison
clearly shows that the methodologies based on non-overlapping domain placement
hugely reduce the recovery time. The difference between recovery times of minority
voter based TMR and XNOR based TMR is not significant. The reasons are the
same floor-plan and the fast error detection latency. For Xilinx TMR, the partial
reconfiguration of a faulty domain is not possible and therefore in case of a fault the
whole FPGA bit-stream should be written back. For a Virtex-5 device that is used
in this experimental study the total bit-stream download time is 25 milliseconds.
However, the Table 5.2 represents the values for Xilinx TMR considering the used
frames only, in order to have a fair comparison with our approach. Although, the
probability of un-detection is quite low due to the low cross-sectional area of the
detector and the hardwired nature of the carry-chains, however, in order to avoid
the accumulation of upsets in the configuration memory, the proposed methodology
can be augmented with a full scrubbing at a considerably low scrub rate compared
to the traditional TMR methodologies.

The reduction in the number of CDEs is a consequence of the non-overlapping
placement of TMR domains in different reconfigurable regions. These results were
obtained by using the STAR tool [101] on the physical-level description format. The
STAR tool uses an analytical approach to estimate the effects of SEUs based upon
a cross-correlation of the bitstream to its resource mapping. Table 5.3 represents
the SEU sensitivity analysis for the standard Xilinx TMR with non-overlapping
domain placement based methodologies. It can be noted that the number of CDEs
are significantly reduced by our methodologies compared to the X-TMR approach.
Mainly, two reasons contribute towards the significant reduction of the number of
CDEs. First, the non-overlapping domain placement and second the frequent run-
time partial repairing. The non-overlapping domain placement nullifies the CDEs
for the combination logic in form of LUTs as discussed in section 5.2.2. The frequent
selective run-time repairing greatly reduces the probability of accumulation of SEUs
in the configuration memory. It can be noted that the CDEs induced by routing
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Table 5.2. Recovery Time Comparison

Circuits
XNOR Detector based TMR Min-TMR

Recovery
Time
(µsecs)

X-TMR
Recovery
Time
(µsecs)

Detector
Length
(CLBs)

Detector
Delay
(nanosecs)

Recovery
Time
(µsec)

RISC5x 22 11.032 74.061 74.05 666.05
CORDICR2P 0 0 530.25 530.25 1590.76
CORDICP2R 0 0 355.47 355.47 1066.41
MINIMIPS 72 18.402 594.11 594.09 5346.81
LEON II 192 27.625 992.95 992.92 11915.01
L80SOC 14 9.928 17.32 17.31 571.21
HP16 47 15.693 217.30 217.27 1303.67
RS DEC 78 23.479 96.43 96.41 1446.11
FPU 17 12.274 1642.19 1642.17 9853.04
DCT 6 9.402 269.63 269.61 2426.54

failures for the minority voter based TMR are more than that for the XNOR-based
TMR. This is due to the nature of minority voter which requires three inputs from
three different domains. In fact this strong likelihood in terms of interconnections
between the majority voters and the minority voters can result in a placement in the
same CLB. Although, we constrained the placement in such a way that logic from
different domains do not mix up, however, in a domain the placement of majority
voter and minority voter is not constrained. This increases the probability that a
CDE in the routing can result in an error being undetected when the minority voter
is affected. This can cause a fault to linger longer in the TMR circuit resulting in
the accumulation of faults and can lead to a functional failure. The use of XNOR
gate reduces the probability of a fault being un-detected due to the fact that it
uses two inputs from the same domain. Moreover, the carry-chain based detectors
are non-programmable and are not controlled by SRAM cells thus enhancing the
dependability.

The area comparison of the proposed approaches with X-TMR is shown in figure
5.6. For each benchmark circuit shown on the horizontal axis, the vertical axis
plots the number of LUTs utilized by the design using a logarithmic scale. Consider
the case of the CORDIC cores: both circuits have zero area overhead, while the
percentage timing improvement is 67 percent. This is because both circuits have

75



5 – Dynamically Reconfigurable Triple Modualar Redundancy

Table 5.3. Critical SEUs-induced cross domain errors

Circuit
X-TMR

Minority-Voter
based TMR

XNOR-based TMR
(proposed scheme)

CLB Routing CLB Routing CLB Routing
RISC5x 22 32 0 13 0 6
CORDICR2P 20 84 0 22 0 12
CORDICP2R 32 932 0 76 0 42
MINIMIPS 12 342 0 24 0 12
LEON II 52 1,230 0 88 0 47
L80SOC 31 86 0 10 0 0
HP16 28 109 0 21 0 14
RS DEC 32 118 0 30 0 18
FPU 19 273 0 54 0 32
DCT 10 120 0 19 0 12
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Figure 5.6. Area comparison of proposed TMR architecture with X-TMR

a single partition and the overhead in this case is just the one stemming from
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the flag signals taken from the output of minority voters. For the case of two
partitions, HP16 has more area overhead compared to FPU because the number of
signals is comparable; however, the logic resources in FPU are far more than the
logic resources of HP16. This means that for the same number of signal groups
and partitions, for any two different designs our method will result in less area
overhead for the larger design. Moreover, for two designs with roughly the same
area (e.g., RISC5x and L80SOC) our approach will result in a larger area overhead
for the design with the larger number of partitions. Concretely, the area overhead is
dependent directly on the number of signal groups and on the number of partitions.
Also the logic distribution of resources and area of the original circuits have impact
on the area overhead of our method. As discussed in detail in section 5.3.1, the
single SEU fault assumption, enable us to remove the steering logic in the minority
voter based schemes, therefore, the proposed approach has a less area overhead than
the approach proposed in [100]. The effects of the proposed methodology on the
operating frequency of the benchmark circuits are shown in figure 5.7. These results
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Figure 5.7. Effects of proposed methodology on clock period

were obtained by analyzing the post place and route net-list with the Xilinx timing
analyzer tool. For each benchmark circuit the figure shows the clock period for
Xilinx TMR, XNOR based mixed floor-planned, XNOR based non-overlapping and
minority voter based non-overlapping versions. The plot shows, on the vertical axis
the clock period (in nanoseconds) and the corresponding benchmark circuit on the
horizontal axis. The Xilinx TMR version is implemented with standard tool-flow
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and is not constrained in any way. The mixed floor-planned version has the XNOR
based error detectors inside but the domains overlap. The minority voter version
utilized the physical-level flow and uses a simulated annealing placement algorithm.
The custom simulated annealing placer has a poor performance compared to the
Xilinx placer utilized by the other three versions. In contrary to our intuition, the
floor-planning of domains has enhanced the performance of some of the benchmark
circuits. The reason for this performance improvement can be contributed to the fact
that the manual floorplan, done in an optimal manner for most benchmark circuits,
enables the placer to more rigorously optimize the wire-length due to compact area
constraints. It is also very interesting to note that the insertion of very long error
detectors in the TMR circuit does not affect the circuit operating frequency. This is
due to the usage of dedicated hardwired carry-chains connections, designed for fast
arithmetic computations, that never changed the critical path of the circuits.
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Chapter 6

ASIC Fault Emulation

Hardware fault emulation for Application Specific Integrated Circuits (ASICs) on
FPGAs can considerably reduce the time required for the fault simulation. This
chapter presents a methodology to emulate ASIC faults on state-of-the-art FPGAs.
The fault emulation is achieved by following a fully automated process consisting
of: constrained technology mapping of ASIC net-list; creation of fault dictionary,
generation of faulty partial bit-streams and fault emulation. The proposed approach
exploits run-time partial reconfiguration techniques for fault injection and avoids
full net-list re-compilations. The methods feasibility is assessed through carefully
selected circuits and overhead in terms of area and timing is reported.

6.1 Motivation

As discussed in previous chapters that the circuit instrumentation approaches for
fault emulation modifies the original net-list by inserting extra- hardware elements
for fault injection purposes. In contrast, the reconfiguration-based techniques change
the configuration bit-stream to inject faults and therefore do not incur hardware
overhead making reconfiguration based approaches are very attractive. The chal-
lenge is how to fault emulate every ASIC fault with a corresponding faulty con-
figuration bit-stream for the FPGA. For fault emulation of ASICs on FPGA, it is
necessary to consider the types of technology nodes both utilize. ASIC net-lists are
composed of gates in a specific standard cell library while FPGA net-lists comprise
of Look Up Tables (LUTs). LUTs can implement any combinational Boolean func-
tion of k inputs where k is the maximum number of inputs to the LUT. To optimize
area (usually measured in number of LUTs) and delay, during mapping of the ASIC
net-list on FPGA, the FPGA CAD tools changes the structure of the original ASIC
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net-list; clearly, this process is not affordable for fault emulation purposes, since it
may lead to structural differences in the considered circuits, modifying the actual
faults to be emulated. A possible solution may rely on partitioning the ASIC net-
list to a set of circuit chunks suitable to be placed into the FPGA LUTs; however,
this division process is hard to obtain by using commercial FPGA tools. Therefore,
a known technology mapping from the ASIC net-list to FPGA net-list is manda-
tory to maintain the same circuit structure, that guarantees the actual emulation
of all the ASIC faults. The authors in [88] used a constrained technology mapping
exploiting a commercial fault emulation platform for serial fault emulation. This
technique results in a known logic mapping for each gate of the original ASIC gates.
Resultantly, the fault emulation for each ASIC fault with a corresponding LUT
configuration string is made possible. However, the technique was applied using a
commercial fault emulation platform requiring vendor specific tool-chain. This chap-
ter presents an efficient methodology for the stuck-at fault emulation of ASICs on
commercial FPGAs. The methodology starts from an ASIC synthesized net-list and
applies a constraint technology mapping to get the circuit without any modification
into an FPGA net-list comprising of LUTs. Then, a fault dictionary generator au-
tomatically computes all the faulty LUT strings. Consequently, a partial bit-stream
is generated for the every fault in the obtained dictionary, which is used later for
fault emulation on FPGA. Our methodology enables the run-time injection of faults
using dynamic partial reconfiguration and avoids lengthy recompilation times. Ex-
perimental results gathered on a set of representing circuits show that the approach
is able to achieve a fault emulation speedup compared with software fault simulation
while guaranteeing the emulation of every ASIC fault with a corresponding FPGA
configuration string.

6.2 Fault Emulation on FPGAs

The emulation of ASIC faults on FPGA requires the knowledge of the FPGA’s re-
source that can be exploited for fault injection. This section outlines the generic
architecture of FPGA devices that may be exploited during fault emulation. In
particular, combinatorial logic fault injection based on LUT reconfiguration, as well
as, flip-flop’s fault injection techniques are summarized. In addition, some consid-
erations about the relationship between technology mapping and its effects on fault
list are described in details.
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6.2.1 Fault Emulaiton in LUTs

FPGA consists of tiles of different primitive types. For example, a tile can be made
of Configurable Logic Blocks (CLBs), DSPs, BRAMs, IOBs and Interconnect Tile.
The CLBs are the workhorse of FPGAs for implementing combinational and sequen-
tial elements of a circuit. Each CLB consists of a number of function generators
in form of LUTs. Within each CLB, flip-flops reside in close proximity to LUTs.
Each CLB can connect to global horizontal and vertical interconnect lines using the
Interconnect Tile located near to it. For a LUT with k inputs the maximum number
of configurations is 22k. Figure 6.1 shows an abstract architectural view of a part
of CLB and its Interconnect Tile. For illustration purposes only one LUT and FF
is shown in the figure 6.1. It can be noted that the LUT implements a six input
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Figure 6.1. Fault emulation in LUTs and FFs

function as shown in equation (6.1)

O6 = ((I0¬ ∧ I1)¬ ∧ I5)¬ ∧ (I2¬ ∧ (I3 ∨ I4)) (6.1)

If this equation represents a logic cone that belongs to the original ASIC net-list
then, it is possible to emulate ASIC equivalent faults on the structure through a
corresponding LUT equation modification. For example, for net f in figure 6.1, a
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stuck-at zero corresponds to LUT equation (6.2)

O6 = ((I0¬ ∧ I1)¬ ∧ I5)¬ ∧ (1) (6.2)

6.2.2 Fault Emulation in FFs

Flip-flop faults emulation, on the other hand, may be handled resorting to multiple
scenarios according to the circuit structure. Figure 6.1 shows a FF that can be fed
by the O6 output of a LUT, O5 output of a LUT or with the auxiliary input line
AX. For emulating a fault at the input of the FF, a LUT or an Interconnect Tile
can be used. When the FF is connected to a single LUT within the same CLB, the
LUT equation can be modified accordingly to the considered fault model to emulate
the fault at the input of the FF. However, when the LUT output feeds multiple
sinks including a FF, this strategy is not suitable. In this case, it is possible to use
the GROUND and VCC resources present near the Interconnect Tile of each CLB,
by connecting the AX to the input of the FF using the Interconnect Tile and the
configurable multiplexer available within each CLB.

6.2.3 Technology Mapping

FPGA CAD tools significantly differ from ASIC tools because the underlying tech-
nology both use is very different. Emulating ASIC faults using a FPGA based
method requires maintaining the structure of the ASIC net-list. However, resorting
to standard FPGA tools may result in different circuit structure since these tools
usually make several logic optimizations modifying the ASIC net-list. The mapping
of ASIC gates to LUTs, is usually referred to as K-LUT technology mapping. This
process may duplicate part of the original ASIC gates for reducing the number of
LUTs or reducing delay or both [106]. Another optimization uses functional de-
composition of ASIC gates to smaller gates for reducing the number of LUTs [107].
However, it is not possible to know how the FPGA tools partitioned the ASIC net-list
for mapping to LUTs. In any case, the different approaches for K-LUT technology
mapping combine multiple ASIC gates into one FPGA LUT, while maintaining the
circuit flip-flops. Thus, it is possible to exploit the similarity between the two net-
lists for fault emulation purposes. However, for guaranteed fault emulation (i.e.,
every ASIC fault has a corresponding LUT configuration) the behavior of both the
ASIC circuit and the FPGA model must be the same for all possible inputs. Using
this criteria for finding the equivalent LUT configuration for each ASIC fault using
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commercial software CAD tools for FPGA is hugely time consuming. Consider the
case when multiple LUTs reside in a combinational logic between two flip-flops. For
finding the equivalent LUT configuration for an ASIC fault the size of search space
is equation (6.3).

NP Is ∗ (NLUT s ∗ 22k) (6.3)

Where NLUT s represents the number of LUTs that resides in the combination
logic between two flip-flops, NP Is is the k number of primary inputs and 22k is the
number of possible configuration for each LUT. Obviously, for guaranteeing fault
emulation this is prohibitively time consuming task, and diminishes the returns
of hardware emulation when all faults are considered. The search space for this
problem can be limited by using the active number of inputs to the LUT as presented
in [93] [94]. However, for guaranteed fault emulation it is still excessively large.
Therefore, it is necessary to use a custom technology mapping that avoids changes
to net-list and results in a known mapping of ASIC gates to FPGA LUTs.

6.3 Proposed Methadology

In this section, we discuss in detail the proposed methodology for ASIC fault em-
ulation on state of the art Xilinx FPGAs. The methodology consists of two main
phases: a custom technology mapping of the ASIC net-list to LUT-level FPGA net-
list, and the creation of a fault dictionary as shown in figure 6.2. The developed
tools use Boost C++ libraries [60], and builds upon the framework presented in [58].
The following paragraphs explain in details all the phases involved.

6.3.1 Custom technology mapping

The goal of this step is to translate an ASIC gate-level net- list to a LUT-level FPGA
net-list suitable for fault emulation. This problem of converting the ASIC gates to
LUTs is usually called K-LUT technology mapping. The existence of multiple fan-
out nodes makes the problem of optimal technology mapping very challenging [108].
Figure 6.3 shows an ASIC net-list with a couple of multiple fan-out gates. The
circuit is then mapped to three FPGA LUTs, represented in figure 6.3 by the boxes
labeled as LUT1, LUT2 and LUT3. This technology mapping uses the concept of
Maximum Fan-out Free Cones (MFFCs) [109]. The MFFC of a node v represents
the maximum number of nodes in the transitive fan-in of a gate in such a way that
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the fan-out of every node in the MFFC except the node v is inside the MFFC. For
example, the MFFC of node k represented by MFFCk is composed of all the gates
in the transitive fan-in h,i,b,c except the node a because it fan-outs to MFFCj. It
is interesting to note that the gate b has also multiple fan-out but they re-converge
on gate k and therefore are a part of MFFCk. If the MFFC is k-feasible (i.e., the
number of inputs are less than or equal to k, the maximum number of inputs to a
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LUT) it can be collapsed into a LUT. All the MFFCs in figure 6.4 are k-feasible
and therefore are a candidate for a LUT. The advantage of MFFC based mapping is
that emulating a fault on a multiple fan-out node requires reconfiguring only a single
LUT and thus can exploit collapsed ASIC fault list to reduce the fault emulation
time. However, the required number of LUTs can be reduced from three to two
if duplication is allowed as shown in figure 6.4. It can be noted that node a has
been duplicated. For fault emulation purposes every ASIC fault on the structure
of node a should be emulated in both LUTs. With state of the art ASIC synthesis
tools it is often the case that a gate fan-outs to more than two gates. Resultantly,
allowing duplication during technology mapping would mean that a single ASIC
fault is converted to multiple FPGA faults. In the proposed approach, the presented
mapping process uses MFFC duplication-free mapping of the ASIC net-list avoiding
nodes duplication in the resulting LUTs. In order to create the actual LUT-level
net-list, it is required to identify the initial values every LUT is going to assume.
Let us describe how this process is performed for the LUT 2 in figure 6.3. The input
nets in1, in2, in3 and fanoutwire are arbitrarily bound to the LUT address lines
I0, I1,I2 and I3. For a 6-input LUT, the address lines can be represented as 64-bit
vectors formed by concatenating the bits along the truth table from top to bottom.
These address lines can be used to calculate the LUT function (often called LUT
INIT value) by walking the LUT’s DAG and applying the corresponding Boolean
operations in the following as show in equation from (6.4) to (6.8) .

I0 = AAAAAAAAAAAAAAAA
(nand)

I1 = CCCCCCCCCCCCCCCC
bout= 7777777777777777

(6.4)

I2 = F0F0F0F0F0F0F0F0
(nand)

I4 = FFFF0000FFFF0000
cout= 0F0FFFFF0F0FFFFF

(6.5)

Now for calculating the values of next level of gates, we can utilize equation (6.4)
and I0

bout = 7777777777777777
(nand)

I0 = AAAAAAAAAAAAAAAA
hout= DDDDDDDDDDDDDDDD

(6.6)
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For gate i using equations (6.4) and (6.5)

cout = 0F0FFFFF0F0FFFFF
(or)

bout = 7777777777777777
iout= 7F7FFFFF7F7FFFFF

(6.7)

The LUT INIT value is the following

iout = 7F7FFFFF7F7FFFFF
(nand)

hout = DDDDDDDDDDDDDDDD
INIT = A2A22222A2A22222

(6.8)

Using this approach a LUT initialization value is calculated and the resultant
description is translated to the required format to be mapped into the FPGA. The
standard FPGA CAD steps are performed for the implementation of the golden
version, followed by bitstream generation phase.
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6.3.2 Fault Dictionary Creation

The purpose of the fault dictionary creation phase is to generate partial bitstreams
for all the faults in the collapsed ASIC fault list. The ASIC fault list may be derived
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using a commercial fault simulator. The proposed algorithm, called Fault Dictionary
Algorithm (FDA) requires a post placed and routed FPGA simulation model, as well
as the ASIC logic cones data-base generated during custom technology mapping and
the collapsed ASIC fault list. For every ASIC logic cone represented as a Directed
Acyclic Graph (DAG), the FDA creates a corresponding faulty LUT equation as
shown in Algorithm 6.1. The algorithm utilizes a map data-structure called VMap

Algorithm 6.1 Fault Dictionary Creation (FDA) algorithm
Input: ASIC Logic Cones and ASIC Collapsed Fault List
Output: Faulty Bitstream Dictionary

1: //******* Nets to LUT pins binding phase *****************
2: while all PIs for current LUT not assigned do
3: AddressLineHexV al = RouterUsedAddressLine(PI);
4: VMap[PI] = AddressLineHexV al;
5: end while
6: //*** Generating Faulty Equations for a LUT DAG *********
7: foreach NET ε LUT DAG do
8: foreach faultCondition on NET do
9: // Assign the fault value to faulty net

10: if (faultCondition on NET ε ASIC faultlist) then
11: VMap[NET ] = FaultyHexV alue;
12: end if
13: // Walk the LUT DAG to calculate faulty equation
14: foreach v ε TopologicalSort of DAG Nodes do
15: foreach INet ε inputNet(v) do
16: VMap[ONet(v)] = VMap[ONet(v)] Opr VMap[INet];
17: end foreach
18: end foreach
19: // Saving the mapping from ASIC to FPGA faults
20: Write to FD[ASICfault] = VMap[LUTDAG ONet];
21: end foreach
22: end foreach

which is indexed by a net and the value stored is the current Boolean equation for
that net during the topological graph traversal. The Boolean equation is generated
by traversing the graph in forward topological order from primary inputs to primary
outputs and at the output of each logic gate, the type of operation represented by
the gate is applied to the values indexed by the input nets. The resulting value is
stored in the map data-structure indexed by the output net. For nets which are
currently at a stuck-at for fault emulation purposes the computed values during
graph traversal is ignored and the stuck-at fault equivalent value is stored in the
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map data-structure. The resulting equation is generated in a format compatible
with Xilinx Design Language (XDL). It is important to retain LUT address lines
even in cases where a fault may make the resultant equation independent on some
particular inputs. For example, in figure 6.1, a stuck-at one fault on g net makes
the whole LUT equation independent on I0 and I1 address lines; however, it is
important to keep these signals in the equation so that FPGA routing is kept intact
and drastic changes to the net-list are avoided. The resultant equation for gstuckat1
is shown in equation (6.9)

O6 = (((I3 ∨ I4)¬ ∧ I2)¬ ∧ (I5)¬ ∧ ((I0 ∨ ¬(I0)) ∧ (I1 ∨ ¬(I1)))) (6.9)

Note that, in the equation, I0 and I1 are there only to avoid re-routing, otherwise
the function is independent on these due to the faulty condition on g. Following this
methodology for each fault, a collection of partial bitstream reconfiguration files
are generated, which are used later in the actual fault injection process. Finally,
the golden circuit, as well as the faulty one is mapped in the same FPGA and the
test patterns may be applied and the behavior on both of the circuits compared
considering every fault.

6.4 Experimental Results

The experimental results were collected on a Xilinx Virtex- 5 VLX110T FPGA
emulating the stuck-at faults for every ASIC benchmark circuit. The methodol-
ogy is applied to 5 circuits including 3 arithmetic circuits and 2 DSP circuits. A
Micro-blaze based version of the platform presented in [110] was adopted for test
pattern application to the Design Under Test (DUT). The DUT has the custom
technology mapped ASIC net-lists in two version i-e the golden copy and the faulty
copy. The DUT also contains a hardware comparator that compares the output
from both copies to detect a faulty condition. The DUT is attached as an IP core
to the Micro-blaze processor for test pattern application and monitoring. The FDA
algorithm’s generated faulty LUT equations are inserted into XDL file of the whole
Micro-blaze system to generate valid partial bit-streams. The stored partial bit-
streams are downloaded one by one from a personal computer to the FPGA. The
processor then starts to apply the test patterns that were derived from the commer-
cial fault simulator stored in an off-chip memory. The results of fault detection are
communicated back to the host PC which proceeds with the injection of another
partial faulty bit-stream. Another set of experiment utilizing the post-Placed and
Routed Simulation model used ModelSim for fault simulation of the ASIC net-list,

88



6.4 – Experimental Results

Xilinx mapped net-list and custom mapped net-list to show the relative difference
in speeds. It is important to note that the test patterns generated with commercial
fault simulator stored in STIL format are used with ModelSim. The fault injection
on the ASIC net-list is achieved with ModelSim force freeze command while for
injecting LUT faults in FPGA net-list, re-compilation with ModelSim -G switch is
performed. Therefore, the simulation timing required for FPGA is more than that of
ASIC fault injection due to re-compilation requirements. The fault simulation time
Tmodelsim is calculated by using ModelSim simstats command with an automated
TCL script. The actual timing requirements of our custom mapper using hardware
emulation are given by Tfpga which is calculated in the following way. Let Tcomp

be the time required for compilation of the golden version of the circuit, Tconfig be
the bit-stream download time, Ncf be the number of collapsed faults required for
ASIC fault simulation, Treconfig be the fault injection or fault removal time, Tpd is
the propagation delay of the critical path in case of combination circuit or the clock
period length in case of sequential circuit and Np are the average number of patterns
required for detection of faults in a benchmark circuit. Then we can write the total
fault emulation time considering serial fault emulation in show in equation (6.10).

Tfpga = Tconfig + Tcomp +Ncf ∗ (Treconfig + Tpd ∗Np) + Treconfig ∗NLUT s (6.10)

It can be noted that the compilation time and configuration time are required
only once and therefore they can be neglected. The reconfiguration time depends
on the number of LUTs because for emulating faults in a single LUT there is no
need to remove the fault before injecting another one but if the next fault is to
be injected in another LUT then the previous faulty LUT should be restored to
the golden LUT configuration value. The product of Tpd*Np is the time required
for fault emulation of each fault. Table 6.1 shows the comparison between the
fault simulation and fault emulation times for ASIC and FPGA netlists. Table
6.2 presents the fault statistics from the original ASIC net-list using commercial
fault simulator Tetra-Max. The original ASIC design was synthesized with Design
Vision for pdt2002 library. It should be noted that because of the known technology
mapping we are able to directly use the values from Table 6.2 and we achieve
the same coverage for the stuck-at fault model given by the Tetra-Max on the given
benchmark circuits. Although our custom technology mapping based fault emulation
flow enables guaranteed emulation of every ASIC fault in the ASIC fault list with
a reduction in fault simulation timing requirements, however, this is achieved at an
overhead in terms of area and delay of the circuit as reported in Table 6.3. It can
be noted that due to MFFC based mapping our mapper utilizes more LUTs and
runs more slowly than the Xilinx mapper.
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Table 6.1. Fault Simulation and Emulation Time Comparison

Circuit
ASIC
Tmodelsim

(sec)

FPGA
Xilinx Mapper
Tmodelsim (sec)

Custom Mapper
Tmodelsim (sec) Tfpga (secs)

Adder64 7.136 120.364 21.503 0.004
Multiplier32 158.87 10,124.09 351.922 0.271
Multiplier64 618.71 1506,061.21 1,418.995 3.732
FIR filter 120.12 24,702.26 418.116 0.058
Hilbert trans 29.15 796.314 92.687 0.012

Table 6.2. Fault Statistics for ASIC netlist

Circuit
Total
Faults

Ncf Np

Coverage
%

Adder64 2,436 1,410 34 100.00
Multiplier32 42,304 23,431 137 99.81
Multiplier64 170,612 94,125 288 99.87
FIR filter 46,696 27,873 14 98.00
Hilbert trans 11,168 6,179 40 97.20

Table 6.3. Area and Overhead delay

Circuit
Xilinx

Mapper
Custom Mapper

LUTs FFs Delay LUTs FFs Delay
Adder64 96 0 29.81 111 0 34.86
Multiplier32 1,624 0 43.40 2,679 0 71.19
Multiplier64 7,110 0 87.68 11,114 0 131.32
FIR filter 2,052 971 18.17 2,396 971 26.33
Hilbert trans 288 225 3.07 387 225 5.99
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Chapter 7

Conclusions

This dissertation focus on the usage of SRAM-based FPGAs for design, implemen-
tation and evaluation of dependable systems. Reducing the time required for fault
injection and fault correction along with effective mitigation of MBUs in the config-
uration memory are the core challenges that this thesis undertook. These problems
are particularly relevant as there is an increasing trend in reconfiguration times
and multiple bit errors with growing device densities and dimensional scaling in the
latest generation of FPGAs. The potential approach for tacking the research chal-
lenges mentioned before are based on granularity of redundancy and reconfiguration.

As the first case study a self-repairing system is investigated which contains
a static and a dynamic region. The static region contains a processor and fixed
resources while the dynamic region contains the Design Under Test (DUT). A fine-
grain fault detection mechanism is used in DUT region while fine-grain correction
mechanism is carried out by the static region in the proposed system. The approach
is characterized by the capabilities of detecting and correcting errors induced by sin-
gle and multiple upsets affecting the FPGA configuration memory. The approach
exploits the available carry chains and the hardwired extra logic to perform the error
detection with error detection latency in order of nanoseconds. For example, detec-
tor employed in single bit error region has a detection latency of approximately 60
nanoseconds for a detector length of 20 CLBs while detectors in multiple bit region
have delay latency of less than 5 nanoseconds. It has been observed that there is a
considerable variable in the error detection latency due to routing congestion in the
local vicinity and due to the design complexity. The effectiveness of our approach
has been evaluated with fault injection campaigns demonstrating that our approach
is able to detect and correct more than 98% of the bit-flips, showing an improve-
ment of more than one order of magnitude in terms of recovery time with respect
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to traditional redundancy-based approaches. Moreover, our approach has a more
limited area overhead in terms of required circuit resources.

The fault masking capabilities of TMR-based scheme enables the systems to op-
erate without interruption, however, they require a periodic scrubbing to avoid the
accumulation of upsets in the configuration memory of FPGA. With the dimen-
sional scaling, low voltage thresholds and densely packed SRAM-cells, not only the
probability of MBUs in the configuration memory is rising but also the scrubbing
time is increasing as well. MBUs can create simultaneous faults in more than two
TMR domains and thus break fault masking abilities, errors arising from this sce-
nario are termed as CDEs. To simultaneously cope with theses problems a modified
TMR architecture is presented in this thesis in order to improve the recovery time
and fault tolerance of TMR circuits implemented on SRAM-based FPGAs. Two key
modifications are proposed in the TMR architecture and in the placement phase.
First, the TMR architecture is instrumented with custom logic at the granularity of
individual domains to detect, localize and repair faulty domains. The huge number
of comparator check flags generated are merged using the on-chip in-slice carry-chain
resources. The carry-chain based detectors utilized in this case functions as an AND-
tree and uses the hardwired internal routing therefore has significantly higher speed
for fault propagation. As an example, a detector of length 192 CLBs has an error
detection latency of 28 nanoseconds. Second, a novel CAD flow is used for inser-
tion of custom logic and non-overlapping placement of TMR domains. The results
shows more than 80% reduction in recovery time compared to X-TMR. Similarly,
the number of CDEs in LUTs reduce to zero while a significant reduction in routing
errors is observed. The recovery time is bounded by the size of maximum partition
in a TMR circuit and is orders of magnitude less that the full scrubbing. The area
overhead depends on the number of signals crossing the boundaries between any
two partitions, on the number of partitions, on the number of logic resources in the
circuit, and on its distribution across partitions. Interestingly, the method does not
incur performance overheads due to the insertion of error detection logic. An ana-
lytical reliability evaluation method is employed for early design phase evaluation
in this thesis; however, in the future it would be interesting to investigate radiation
effects under particle accelerator.

After considering dependable system design techniques which strives to improve
fault tolerance and availability capabilities for circuit mapped on SRAM-based FP-
GAs, fault simulation of custom ICs is investigated which is a dependability evalu-
ation technique. The main motivation of this task is to reduce the fault simulation
times due to at-hardware speed processing on FPGAs. This thesis presented a
methodology and a custom CAD flow for guaranteed emulation of ASIC permanent
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faults using SRAM-based FPGAs. The flow utilizes a custom technology mapping
for directly converting the post layout gate-level net-list into a LUT level net-list.
This known mapping of gates to LUTs enables us to develop a fault dictionary from
the ASIC fault list to FPGA partial bitstreams. The methodology avoids drastic
changes to the net-list, therefore, does not need lengthy re-compilation times during
the fault emulation process. Furthermore, our experimental results demonstrate a
significant speed up for fault emulation compared to software based fault simulation.
In future, we would like to extend the methodology to encompass a wide set of other
fault models and to extend the approach to automatic test pattern generation. It
is also possible to optimize the LUT-mapping algorithm presented in this thesis to
reduce the number of frames required for fault injection thereby improving the speed
of fault injection further.
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